加权Lp → Bloom设定下换向子和副积的lq有界性

IF 2.3 1区 数学 Q1 MATHEMATICS
Timo S. Hänninen , Emiel Lorist , Jaakko Sinko
{"title":"加权Lp → Bloom设定下换向子和副积的lq有界性","authors":"Timo S. Hänninen ,&nbsp;Emiel Lorist ,&nbsp;Jaakko Sinko","doi":"10.1016/j.matpur.2025.103772","DOIUrl":null,"url":null,"abstract":"<div><div>As our main result, we supply the missing characterization of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> boundedness of the commutator of a non-degenerate Calderón–Zygmund operator <em>T</em> and pointwise multiplication by <em>b</em> for exponents <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and Muckenhoupt weights <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Namely, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> is bounded if and only if <em>b</em> satisfies the following new, cancellative condition:<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>ν</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi></math></span> is the weighted sharp maximal function defined by<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>Q</mi></mrow></munder><mo>⁡</mo><mfrac><mrow><msub><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></msub></mrow><mrow><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Q</mi></mrow></munder><mo>|</mo><mi>b</mi><mo>−</mo><msub><mrow><mo>〈</mo><mi>b</mi><mo>〉</mo></mrow><mrow><mi>Q</mi></mrow></msub><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></math></span></span></span> and <em>ν</em> is the Bloom weight defined by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><msup><mrow><mi>λ</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup></math></span>.</div><div>In the unweighted case <span><math><mi>μ</mi><mo>=</mo><mi>λ</mi><mo>=</mo><mn>1</mn></math></span>, by a result of Hytönen the boundedness of the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo></math></span> is, after factoring out constants, characterized by the boundedness of pointwise multiplication by <em>b</em>, which amounts to the non-cancellative condition <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup></math></span>. We provide a counterexample showing that this characterization breaks down in the weighted case <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Therefore, the introduction of our new, cancellative condition is necessary.</div><div>In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> in the missing exponent range <span><math><mi>p</mi><mo>≠</mo><mi>q</mi></math></span>. Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103772"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Lp → Lq-boundedness of commutators and paraproducts in the Bloom setting\",\"authors\":\"Timo S. Hänninen ,&nbsp;Emiel Lorist ,&nbsp;Jaakko Sinko\",\"doi\":\"10.1016/j.matpur.2025.103772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As our main result, we supply the missing characterization of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> boundedness of the commutator of a non-degenerate Calderón–Zygmund operator <em>T</em> and pointwise multiplication by <em>b</em> for exponents <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> and Muckenhoupt weights <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Namely, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> is bounded if and only if <em>b</em> satisfies the following new, cancellative condition:<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>ν</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi></math></span> is the weighted sharp maximal function defined by<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>Q</mi></mrow></munder><mo>⁡</mo><mfrac><mrow><msub><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></msub></mrow><mrow><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Q</mi></mrow></munder><mo>|</mo><mi>b</mi><mo>−</mo><msub><mrow><mo>〈</mo><mi>b</mi><mo>〉</mo></mrow><mrow><mi>Q</mi></mrow></msub><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></math></span></span></span> and <em>ν</em> is the Bloom weight defined by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><msup><mrow><mi>λ</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup></math></span>.</div><div>In the unweighted case <span><math><mi>μ</mi><mo>=</mo><mi>λ</mi><mo>=</mo><mn>1</mn></math></span>, by a result of Hytönen the boundedness of the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo></math></span> is, after factoring out constants, characterized by the boundedness of pointwise multiplication by <em>b</em>, which amounts to the non-cancellative condition <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup></math></span>. We provide a counterexample showing that this characterization breaks down in the weighted case <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Therefore, the introduction of our new, cancellative condition is necessary.</div><div>In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> in the missing exponent range <span><math><mi>p</mi><mo>≠</mo><mi>q</mi></math></span>. Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103772\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001163\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001163","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作为我们的主要结果,我们提供了对于指数1<;q<p<;∞和Muckenhoupt权μ∈Ap和λ∈Aq的非简并Calderón-Zygmund算子T的对易子的Lp(μ)→Lq(λ)有界性和点向乘b的缺失表征。即,换向子[b,T]:Lp(μ)→Lq(λ)有界当且仅当b满足以下新的可消条件:Mν#b∈Lpq/(p−q)(ν),其中Mν#b是Mν#b定义的加权极大函数:=supQ (q)∫q |b−< b > q |dx, ν是ν1/p+1/q ':=μ1/pλ−1/q定义的Bloom权值。在μ=λ=1的未加权情况下,由Hytönen的结果可知,对易子[b,T]的有界性,在分解出常数后,表征为点向乘以b的有界性,即b∈Lpq/(p−q)为不可消去条件。我们提供了一个反例,表明在μ∈Ap和λ∈Aq的加权情况下,这种表征被打破。因此,引入新的消去条件是必要的。与对易子并行,我们也刻画了在缺失指数范围p≠q的并矢副积Πb的加权有界性。结合之前在互补指数范围内的结果,我们的结果完成了对所有指数p,q∈(1,∞)的对易子和副积的加权有界性的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted Lp → Lq-boundedness of commutators and paraproducts in the Bloom setting
As our main result, we supply the missing characterization of the Lp(μ)Lq(λ) boundedness of the commutator of a non-degenerate Calderón–Zygmund operator T and pointwise multiplication by b for exponents 1<q<p< and Muckenhoupt weights μAp and λAq. Namely, the commutator [b,T]:Lp(μ)Lq(λ) is bounded if and only if b satisfies the following new, cancellative condition:Mν#bLpq/(pq)(ν), where Mν#b is the weighted sharp maximal function defined byMν#b:=supQ1Qν(Q)Q|bbQ|dx and ν is the Bloom weight defined by ν1/p+1/q:=μ1/pλ1/q.
In the unweighted case μ=λ=1, by a result of Hytönen the boundedness of the commutator [b,T] is, after factoring out constants, characterized by the boundedness of pointwise multiplication by b, which amounts to the non-cancellative condition bLpq/(pq). We provide a counterexample showing that this characterization breaks down in the weighted case μAp and λAq. Therefore, the introduction of our new, cancellative condition is necessary.
In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts Πb in the missing exponent range pq. Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents p,q(1,).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信