{"title":"加权Lp → Bloom设定下换向子和副积的lq有界性","authors":"Timo S. Hänninen , Emiel Lorist , Jaakko Sinko","doi":"10.1016/j.matpur.2025.103772","DOIUrl":null,"url":null,"abstract":"<div><div>As our main result, we supply the missing characterization of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> boundedness of the commutator of a non-degenerate Calderón–Zygmund operator <em>T</em> and pointwise multiplication by <em>b</em> for exponents <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and Muckenhoupt weights <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Namely, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> is bounded if and only if <em>b</em> satisfies the following new, cancellative condition:<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>ν</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi></math></span> is the weighted sharp maximal function defined by<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>Q</mi></mrow></munder><mo></mo><mfrac><mrow><msub><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></msub></mrow><mrow><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Q</mi></mrow></munder><mo>|</mo><mi>b</mi><mo>−</mo><msub><mrow><mo>〈</mo><mi>b</mi><mo>〉</mo></mrow><mrow><mi>Q</mi></mrow></msub><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></math></span></span></span> and <em>ν</em> is the Bloom weight defined by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><msup><mrow><mi>λ</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup></math></span>.</div><div>In the unweighted case <span><math><mi>μ</mi><mo>=</mo><mi>λ</mi><mo>=</mo><mn>1</mn></math></span>, by a result of Hytönen the boundedness of the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo></math></span> is, after factoring out constants, characterized by the boundedness of pointwise multiplication by <em>b</em>, which amounts to the non-cancellative condition <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup></math></span>. We provide a counterexample showing that this characterization breaks down in the weighted case <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Therefore, the introduction of our new, cancellative condition is necessary.</div><div>In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> in the missing exponent range <span><math><mi>p</mi><mo>≠</mo><mi>q</mi></math></span>. Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"203 ","pages":"Article 103772"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted Lp → Lq-boundedness of commutators and paraproducts in the Bloom setting\",\"authors\":\"Timo S. Hänninen , Emiel Lorist , Jaakko Sinko\",\"doi\":\"10.1016/j.matpur.2025.103772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As our main result, we supply the missing characterization of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> boundedness of the commutator of a non-degenerate Calderón–Zygmund operator <em>T</em> and pointwise multiplication by <em>b</em> for exponents <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mi>p</mi><mo><</mo><mo>∞</mo></math></span> and Muckenhoupt weights <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Namely, the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo><mo>:</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>μ</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><mi>λ</mi><mo>)</mo></math></span> is bounded if and only if <em>b</em> satisfies the following new, cancellative condition:<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>ν</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi></math></span> is the weighted sharp maximal function defined by<span><span><span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>ν</mi></mrow><mrow><mi>#</mi></mrow></msubsup><mi>b</mi><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>Q</mi></mrow></munder><mo></mo><mfrac><mrow><msub><mrow><mn>1</mn></mrow><mrow><mi>Q</mi></mrow></msub></mrow><mrow><mi>ν</mi><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mfrac><munder><mo>∫</mo><mrow><mi>Q</mi></mrow></munder><mo>|</mo><mi>b</mi><mo>−</mo><msub><mrow><mo>〈</mo><mi>b</mi><mo>〉</mo></mrow><mrow><mi>Q</mi></mrow></msub><mo>|</mo><mspace></mspace><mi>d</mi><mi>x</mi></math></span></span></span> and <em>ν</em> is the Bloom weight defined by <span><math><msup><mrow><mi>ν</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>/</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msup><mo>:</mo><mo>=</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>p</mi></mrow></msup><msup><mrow><mi>λ</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>q</mi></mrow></msup></math></span>.</div><div>In the unweighted case <span><math><mi>μ</mi><mo>=</mo><mi>λ</mi><mo>=</mo><mn>1</mn></math></span>, by a result of Hytönen the boundedness of the commutator <span><math><mo>[</mo><mi>b</mi><mo>,</mo><mi>T</mi><mo>]</mo></math></span> is, after factoring out constants, characterized by the boundedness of pointwise multiplication by <em>b</em>, which amounts to the non-cancellative condition <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mi>q</mi><mo>/</mo><mo>(</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>)</mo></mrow></msup></math></span>. We provide a counterexample showing that this characterization breaks down in the weighted case <span><math><mi>μ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> and <span><math><mi>λ</mi><mo>∈</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Therefore, the introduction of our new, cancellative condition is necessary.</div><div>In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mi>b</mi></mrow></msub></math></span> in the missing exponent range <span><math><mi>p</mi><mo>≠</mo><mi>q</mi></math></span>. Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":51071,\"journal\":{\"name\":\"Journal de Mathematiques Pures et Appliquees\",\"volume\":\"203 \",\"pages\":\"Article 103772\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Mathematiques Pures et Appliquees\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021782425001163\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782425001163","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
作为我们的主要结果,我们提供了对于指数1<;q<p<;∞和Muckenhoupt权μ∈Ap和λ∈Aq的非简并Calderón-Zygmund算子T的对易子的Lp(μ)→Lq(λ)有界性和点向乘b的缺失表征。即,换向子[b,T]:Lp(μ)→Lq(λ)有界当且仅当b满足以下新的可消条件:Mν#b∈Lpq/(p−q)(ν),其中Mν#b是Mν#b定义的加权极大函数:=supQ (q)∫q |b−< b > q |dx, ν是ν1/p+1/q ':=μ1/pλ−1/q定义的Bloom权值。在μ=λ=1的未加权情况下,由Hytönen的结果可知,对易子[b,T]的有界性,在分解出常数后,表征为点向乘以b的有界性,即b∈Lpq/(p−q)为不可消去条件。我们提供了一个反例,表明在μ∈Ap和λ∈Aq的加权情况下,这种表征被打破。因此,引入新的消去条件是必要的。与对易子并行,我们也刻画了在缺失指数范围p≠q的并矢副积Πb的加权有界性。结合之前在互补指数范围内的结果,我们的结果完成了对所有指数p,q∈(1,∞)的对易子和副积的加权有界性的刻画。
Weighted Lp → Lq-boundedness of commutators and paraproducts in the Bloom setting
As our main result, we supply the missing characterization of the boundedness of the commutator of a non-degenerate Calderón–Zygmund operator T and pointwise multiplication by b for exponents and Muckenhoupt weights and . Namely, the commutator is bounded if and only if b satisfies the following new, cancellative condition: where is the weighted sharp maximal function defined by and ν is the Bloom weight defined by .
In the unweighted case , by a result of Hytönen the boundedness of the commutator is, after factoring out constants, characterized by the boundedness of pointwise multiplication by b, which amounts to the non-cancellative condition . We provide a counterexample showing that this characterization breaks down in the weighted case and . Therefore, the introduction of our new, cancellative condition is necessary.
In parallel to commutators, we also characterize the weighted boundedness of dyadic paraproducts in the missing exponent range . Combined with previous results in the complementary exponent ranges, our results complete the characterization of the weighted boundedness of both commutators and of paraproducts for all exponents .
期刊介绍:
Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.