{"title":"时空白噪声驱动下非线性时间分数随机热方程的运输成本-信息不等式","authors":"Ruinan Li , Yumeng Li","doi":"10.1016/j.spl.2025.110519","DOIUrl":null,"url":null,"abstract":"<div><div>We establish transportation cost-information inequalities <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>2</mi></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> for solutions of nonlinear stochastic partial differential equation of fractional order in both space and time variables with deterministic and bounded initial conditions: <span><span><span><math><mrow><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mfenced><mrow><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfenced><mspace></mspace><mspace></mspace><mtext>in</mtext><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>γ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msubsup></math></span> is the Caputo fractional derivative, <span><math><mrow><mo>−</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span> is the fractional/power of Laplacian, <span><math><msubsup><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span> is the Riemann–Liouville integral operator, <span><math><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a space–time white noise, and <span><math><mrow><mi>σ</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow></math></span> is a bounded and Lipschitz function. Since the space variable is defined on the unbounded domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, the inequalities are proved under a weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm in the spatial domain.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"227 ","pages":"Article 110519"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transportation cost-information inequality for non-linear time-fractional stochastic heat equation driven by space–time white noise\",\"authors\":\"Ruinan Li , Yumeng Li\",\"doi\":\"10.1016/j.spl.2025.110519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish transportation cost-information inequalities <span><math><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>2</mi></mrow></msub><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow></mrow></math></span> for solutions of nonlinear stochastic partial differential equation of fractional order in both space and time variables with deterministic and bounded initial conditions: <span><span><span><math><mrow><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mfenced><mrow><mi>σ</mi><mrow><mo>(</mo><mi>u</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></mfenced><mspace></mspace><mspace></mspace><mtext>in</mtext><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>β</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>, <span><math><mrow><mi>γ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><msubsup><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>β</mi></mrow></msubsup></math></span> is the Caputo fractional derivative, <span><math><mrow><mo>−</mo><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span> is the fractional/power of Laplacian, <span><math><msubsup><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math></span> is the Riemann–Liouville integral operator, <span><math><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>̇</mo></mrow></mover><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a space–time white noise, and <span><math><mrow><mi>σ</mi><mo>:</mo><mi>R</mi><mo>→</mo><mi>R</mi></mrow></math></span> is a bounded and Lipschitz function. Since the space variable is defined on the unbounded domain <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, the inequalities are proved under a weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm in the spatial domain.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"227 \",\"pages\":\"Article 110519\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715225001646\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225001646","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Transportation cost-information inequality for non-linear time-fractional stochastic heat equation driven by space–time white noise
We establish transportation cost-information inequalities for solutions of nonlinear stochastic partial differential equation of fractional order in both space and time variables with deterministic and bounded initial conditions: where , , , is the Caputo fractional derivative, is the fractional/power of Laplacian, is the Riemann–Liouville integral operator, is a space–time white noise, and is a bounded and Lipschitz function. Since the space variable is defined on the unbounded domain , the inequalities are proved under a weighted -norm in the spatial domain.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.