化学环燃烧过程中H2S和Hg0与氧载体LaMnO3相互作用的机制:DFT研究

Zhongze Bai , Kai H. Luo
{"title":"化学环燃烧过程中H2S和Hg0与氧载体LaMnO3相互作用的机制:DFT研究","authors":"Zhongze Bai ,&nbsp;Kai H. Luo","doi":"10.1016/j.ccst.2025.100480","DOIUrl":null,"url":null,"abstract":"<div><div>Mercury (Hg<sup>0</sup>) and hydrogen sulphide (H<sub>2</sub>S) inevitably coexist during chemical looping combustion (CLC) of coal or coal-derived syngas. Their interactions with oxygen carriers are critical to understanding mercury transformation and removal. In this study, density functional theory (DFT) calculations were conducted to investigate the reaction mechanisms among Hg<sup>0</sup>, H<sub>2</sub>S, and the LaMnO<sub>3</sub>(010) surface (a Mn-based perovskite with excellent redox properties and thermal stability). Results show that H<sub>2</sub>S, HS, and S chemisorb on the surface via stable S-Mn bonding, while HgS forms through parallel adsorption involving both Hg-Mn and S-Mn bonds. The preferred H<sub>2</sub>S decomposition pathway involves simultaneous dehydrogenation to produce S* and H*, with H* subsequently forming H<sub>2</sub> or H<sub>2</sub>O. Among the examined reaction routes, Hg<sup>0</sup> reacts most favourably with S* via the Eley-Rideal mechanism, exhibiting the lowest energy barrier of 2.939 eV. These findings offer atomic-level insight into Hg-S interactions on LaMnO<sub>3</sub> surfaces and provide a theoretical foundation for the rational design of perovskite-based oxygen carriers (OCs) capable of efficient simultaneous mercury capture and sulphur stabilization, thereby advancing integrated Hg<sup>0</sup> and HgS removal strategies in CLC systems.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"16 ","pages":"Article 100480"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms for interactions of H2S and Hg0 with oxygen carrier LaMnO3 during chemical looping combustion: a DFT study\",\"authors\":\"Zhongze Bai ,&nbsp;Kai H. Luo\",\"doi\":\"10.1016/j.ccst.2025.100480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mercury (Hg<sup>0</sup>) and hydrogen sulphide (H<sub>2</sub>S) inevitably coexist during chemical looping combustion (CLC) of coal or coal-derived syngas. Their interactions with oxygen carriers are critical to understanding mercury transformation and removal. In this study, density functional theory (DFT) calculations were conducted to investigate the reaction mechanisms among Hg<sup>0</sup>, H<sub>2</sub>S, and the LaMnO<sub>3</sub>(010) surface (a Mn-based perovskite with excellent redox properties and thermal stability). Results show that H<sub>2</sub>S, HS, and S chemisorb on the surface via stable S-Mn bonding, while HgS forms through parallel adsorption involving both Hg-Mn and S-Mn bonds. The preferred H<sub>2</sub>S decomposition pathway involves simultaneous dehydrogenation to produce S* and H*, with H* subsequently forming H<sub>2</sub> or H<sub>2</sub>O. Among the examined reaction routes, Hg<sup>0</sup> reacts most favourably with S* via the Eley-Rideal mechanism, exhibiting the lowest energy barrier of 2.939 eV. These findings offer atomic-level insight into Hg-S interactions on LaMnO<sub>3</sub> surfaces and provide a theoretical foundation for the rational design of perovskite-based oxygen carriers (OCs) capable of efficient simultaneous mercury capture and sulphur stabilization, thereby advancing integrated Hg<sup>0</sup> and HgS removal strategies in CLC systems.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"16 \",\"pages\":\"Article 100480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825001198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825001198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在煤或煤制合成气的化学环燃烧过程中,汞(Hg0)和硫化氢(H2S)不可避免地共存。它们与氧载体的相互作用对于理解汞的转化和去除至关重要。本研究通过密度泛函理论(DFT)计算研究了Hg0、H2S和LaMnO3(010)表面(一种具有优异氧化还原性能和热稳定性的锰基钙钛矿)之间的反应机理。结果表明,H2S、HS和S通过稳定的S- mn键在表面化学吸附,而HgS则通过h - mn和S- mn键的平行吸附形成。首选的H2S分解途径是同时脱氢生成S*和H*, H*随后生成H2或H2O。在所研究的反应途径中,Hg0与S*最有利的反应途径是Eley-Rideal机制,其能垒最低,为2.939 eV。这些发现为LaMnO3表面Hg-S相互作用提供了原子水平的见解,并为合理设计能够有效同时捕获汞和稳定硫的钙钛矿基氧载体(OCs)提供了理论基础,从而推进了CLC系统中Hg0和HgS的综合去除策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanisms for interactions of H2S and Hg0 with oxygen carrier LaMnO3 during chemical looping combustion: a DFT study

Mechanisms for interactions of H2S and Hg0 with oxygen carrier LaMnO3 during chemical looping combustion: a DFT study
Mercury (Hg0) and hydrogen sulphide (H2S) inevitably coexist during chemical looping combustion (CLC) of coal or coal-derived syngas. Their interactions with oxygen carriers are critical to understanding mercury transformation and removal. In this study, density functional theory (DFT) calculations were conducted to investigate the reaction mechanisms among Hg0, H2S, and the LaMnO3(010) surface (a Mn-based perovskite with excellent redox properties and thermal stability). Results show that H2S, HS, and S chemisorb on the surface via stable S-Mn bonding, while HgS forms through parallel adsorption involving both Hg-Mn and S-Mn bonds. The preferred H2S decomposition pathway involves simultaneous dehydrogenation to produce S* and H*, with H* subsequently forming H2 or H2O. Among the examined reaction routes, Hg0 reacts most favourably with S* via the Eley-Rideal mechanism, exhibiting the lowest energy barrier of 2.939 eV. These findings offer atomic-level insight into Hg-S interactions on LaMnO3 surfaces and provide a theoretical foundation for the rational design of perovskite-based oxygen carriers (OCs) capable of efficient simultaneous mercury capture and sulphur stabilization, thereby advancing integrated Hg0 and HgS removal strategies in CLC systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信