{"title":"超音速降落伞膨胀的壁型大涡模拟","authors":"Francois Cadieux, Michael F. Barad","doi":"10.1016/j.compfluid.2025.106800","DOIUrl":null,"url":null,"abstract":"<div><div>Supersonic parachutes have been used in nearly every robotic mission to another planetary body with an atmosphere because they are a mass-efficient ways to decelerate a payload to land on the surface. Short of performing flight tests in the upper Earth atmosphere, we currently cannot reliably predict a novel parachute system’s performance or potential failure modes, or even confidently explain it after the fact, as was the case with the Low Density Supersonic Decelerator flight tests and subsequent investigations. High-fidelity fluid–structure interaction (FSI) simulations have the potential to bridge this gap. To this end, we present several improvements to the state-of-the-art for simulating supersonic parachutes using FSI: a higher effective resolution convective flux, an immersed boundary turbulent wall layer modeling approach to capture viscous effects, and a novel method to obtain a more realistic initial parachute shape. A recent supersonic parachute flight test is simulated and compared with measurements for the purposes of model validation.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"301 ","pages":"Article 106800"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wall-modeled large-eddy simulation of supersonic parachute inflation\",\"authors\":\"Francois Cadieux, Michael F. Barad\",\"doi\":\"10.1016/j.compfluid.2025.106800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Supersonic parachutes have been used in nearly every robotic mission to another planetary body with an atmosphere because they are a mass-efficient ways to decelerate a payload to land on the surface. Short of performing flight tests in the upper Earth atmosphere, we currently cannot reliably predict a novel parachute system’s performance or potential failure modes, or even confidently explain it after the fact, as was the case with the Low Density Supersonic Decelerator flight tests and subsequent investigations. High-fidelity fluid–structure interaction (FSI) simulations have the potential to bridge this gap. To this end, we present several improvements to the state-of-the-art for simulating supersonic parachutes using FSI: a higher effective resolution convective flux, an immersed boundary turbulent wall layer modeling approach to capture viscous effects, and a novel method to obtain a more realistic initial parachute shape. A recent supersonic parachute flight test is simulated and compared with measurements for the purposes of model validation.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"301 \",\"pages\":\"Article 106800\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025002609\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025002609","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Wall-modeled large-eddy simulation of supersonic parachute inflation
Supersonic parachutes have been used in nearly every robotic mission to another planetary body with an atmosphere because they are a mass-efficient ways to decelerate a payload to land on the surface. Short of performing flight tests in the upper Earth atmosphere, we currently cannot reliably predict a novel parachute system’s performance or potential failure modes, or even confidently explain it after the fact, as was the case with the Low Density Supersonic Decelerator flight tests and subsequent investigations. High-fidelity fluid–structure interaction (FSI) simulations have the potential to bridge this gap. To this end, we present several improvements to the state-of-the-art for simulating supersonic parachutes using FSI: a higher effective resolution convective flux, an immersed boundary turbulent wall layer modeling approach to capture viscous effects, and a novel method to obtain a more realistic initial parachute shape. A recent supersonic parachute flight test is simulated and compared with measurements for the purposes of model validation.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.