带有角的域上neumann - poincar算子的内嵌特征值和复共振的复尺度边界积分方程

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Luiz M. Faria , Florian Monteghetti
{"title":"带有角的域上neumann - poincar<s:1>算子的内嵌特征值和复共振的复尺度边界积分方程","authors":"Luiz M. Faria ,&nbsp;Florian Monteghetti","doi":"10.1016/j.camwa.2025.08.012","DOIUrl":null,"url":null,"abstract":"<div><div>The adjoint of the harmonic double-layer operator, also known as the Neumann-Poincaré (NP) operator, is a boundary integral operator whose real eigenvalues are associated with surface modes that find applications in e.g. photonics. On 2D domains with corners, the NP operator looses its compactness, as each corner induces a bounded interval of essential spectrum, and can exhibit both embedded eigenvalues and complex resonances. This work introduces a non-self-adjoint boundary integral operator whose discrete spectrum contains both embedded eigenvalues and complex resonances of the NP operator. This operator is obtained using a Green's function that is complex-scaled at each corner of the boundary. Numerical experiments using a Nyström discretization on a graded mesh demonstrates the accuracy of the method and its advantage over a 2D finite element discretization implementing the same complex scaling technique.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"197 ","pages":"Pages 135-166"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A complex-scaled boundary integral equation for the embedded eigenvalues and complex resonances of the Neumann-Poincaré operator on domains with corners\",\"authors\":\"Luiz M. Faria ,&nbsp;Florian Monteghetti\",\"doi\":\"10.1016/j.camwa.2025.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The adjoint of the harmonic double-layer operator, also known as the Neumann-Poincaré (NP) operator, is a boundary integral operator whose real eigenvalues are associated with surface modes that find applications in e.g. photonics. On 2D domains with corners, the NP operator looses its compactness, as each corner induces a bounded interval of essential spectrum, and can exhibit both embedded eigenvalues and complex resonances. This work introduces a non-self-adjoint boundary integral operator whose discrete spectrum contains both embedded eigenvalues and complex resonances of the NP operator. This operator is obtained using a Green's function that is complex-scaled at each corner of the boundary. Numerical experiments using a Nyström discretization on a graded mesh demonstrates the accuracy of the method and its advantage over a 2D finite element discretization implementing the same complex scaling technique.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"197 \",\"pages\":\"Pages 135-166\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003402\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003402","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

谐波双层算子的伴随算子,也被称为neumann - poincar算子,是一个边界积分算子,其实特征值与表面模式相关,在光子学等领域得到应用。在有角的二维域上,NP算子失去了紧性,因为每个角都会产生一个有界的基本谱区间,并且可以同时表现出嵌入的特征值和复共振。本文介绍了一种非自伴随边界积分算子,其离散谱同时包含嵌入的特征值和NP算子的复共振。该算子是使用在边界的每个角上都是复尺度的格林函数得到的。采用Nyström对分级网格进行离散的数值实验证明了该方法的准确性,并且优于采用相同复杂尺度技术的二维有限元离散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A complex-scaled boundary integral equation for the embedded eigenvalues and complex resonances of the Neumann-Poincaré operator on domains with corners
The adjoint of the harmonic double-layer operator, also known as the Neumann-Poincaré (NP) operator, is a boundary integral operator whose real eigenvalues are associated with surface modes that find applications in e.g. photonics. On 2D domains with corners, the NP operator looses its compactness, as each corner induces a bounded interval of essential spectrum, and can exhibit both embedded eigenvalues and complex resonances. This work introduces a non-self-adjoint boundary integral operator whose discrete spectrum contains both embedded eigenvalues and complex resonances of the NP operator. This operator is obtained using a Green's function that is complex-scaled at each corner of the boundary. Numerical experiments using a Nyström discretization on a graded mesh demonstrates the accuracy of the method and its advantage over a 2D finite element discretization implementing the same complex scaling technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信