光响应型金属-有机骨架控制CO2吸附与释放:提高作物产量

IF 2.9 Q1 AGRICULTURE, MULTIDISCIPLINARY
Huiping Tian, Yuliang Yao, Rui Li, Shuaiqi An, Chao Huang, Jingzhe Sheng and Xin Jia*, 
{"title":"光响应型金属-有机骨架控制CO2吸附与释放:提高作物产量","authors":"Huiping Tian,&nbsp;Yuliang Yao,&nbsp;Rui Li,&nbsp;Shuaiqi An,&nbsp;Chao Huang,&nbsp;Jingzhe Sheng and Xin Jia*,&nbsp;","doi":"10.1021/acsagscitech.5c00182","DOIUrl":null,"url":null,"abstract":"<p >Carbon dioxide (CO<sub>2</sub>) is the material substance of plant photosynthesis, yet its concentration remains insufficient to meet plant photosynthesis demands. Therefore, the formation of CO<sub>2</sub>-enriched regions around leaf stomata is expected to improve the efficiency of plant photosynthesis. Herein, a photoresponsive metal–organic framework (Zr-ABTC) was constructed from azobenzene bonds, while T(n)/Zr-ABTC was prepared by the incorporation of tetraethyl pentamine (TEPA) with an adsorption ability for CO<sub>2</sub>. The photoresponsive material could capture CO<sub>2</sub> in darkness and release it under ultraviolet irradiation, thus establishing a CO<sub>2</sub> “enrichment-release” cycle under dark/light cycles. Upon application of Zr-ABTC onto Chinese little green leaves, scanning electron microscopy (SEM) revealed that the material is distributed around plant stomata, resulting in an 87.5% increase in crop yield compared with the blank control group not treated by Zr-ABTC (dry weight). The photothermal responsive materials created in this article may be used to improve the photosynthetic efficiency and enhance agricultural productivity.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 8","pages":"1632–1640"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled CO2 Adsorption and Release by Photoresponsive Metal–Organic Frameworks: Enhancing Crop Yields\",\"authors\":\"Huiping Tian,&nbsp;Yuliang Yao,&nbsp;Rui Li,&nbsp;Shuaiqi An,&nbsp;Chao Huang,&nbsp;Jingzhe Sheng and Xin Jia*,&nbsp;\",\"doi\":\"10.1021/acsagscitech.5c00182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon dioxide (CO<sub>2</sub>) is the material substance of plant photosynthesis, yet its concentration remains insufficient to meet plant photosynthesis demands. Therefore, the formation of CO<sub>2</sub>-enriched regions around leaf stomata is expected to improve the efficiency of plant photosynthesis. Herein, a photoresponsive metal–organic framework (Zr-ABTC) was constructed from azobenzene bonds, while T(n)/Zr-ABTC was prepared by the incorporation of tetraethyl pentamine (TEPA) with an adsorption ability for CO<sub>2</sub>. The photoresponsive material could capture CO<sub>2</sub> in darkness and release it under ultraviolet irradiation, thus establishing a CO<sub>2</sub> “enrichment-release” cycle under dark/light cycles. Upon application of Zr-ABTC onto Chinese little green leaves, scanning electron microscopy (SEM) revealed that the material is distributed around plant stomata, resulting in an 87.5% increase in crop yield compared with the blank control group not treated by Zr-ABTC (dry weight). The photothermal responsive materials created in this article may be used to improve the photosynthetic efficiency and enhance agricultural productivity.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"5 8\",\"pages\":\"1632–1640\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳(CO2)是植物光合作用的物质,但其浓度仍不足以满足植物光合作用的需要。因此,在叶片气孔周围形成co2富集区有望提高植物光合效率。本文通过偶氮苯键构建光响应型金属-有机骨架(Zr-ABTC),通过加入具有CO2吸附能力的四乙基五胺(TEPA)制备T(n)/Zr-ABTC。光响应材料可以在黑暗中捕获CO2,并在紫外线照射下释放CO2,从而在暗/光循环下建立CO2“富集-释放”循环。Zr-ABTC施于中国小绿叶后,扫描电镜(SEM)显示,该物质分布在植物气孔周围,与未施Zr-ABTC的空白对照(干重)相比,作物产量增加了87.5%。本文制备的光热响应材料可用于提高光合效率,提高农业生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Controlled CO2 Adsorption and Release by Photoresponsive Metal–Organic Frameworks: Enhancing Crop Yields

Controlled CO2 Adsorption and Release by Photoresponsive Metal–Organic Frameworks: Enhancing Crop Yields

Carbon dioxide (CO2) is the material substance of plant photosynthesis, yet its concentration remains insufficient to meet plant photosynthesis demands. Therefore, the formation of CO2-enriched regions around leaf stomata is expected to improve the efficiency of plant photosynthesis. Herein, a photoresponsive metal–organic framework (Zr-ABTC) was constructed from azobenzene bonds, while T(n)/Zr-ABTC was prepared by the incorporation of tetraethyl pentamine (TEPA) with an adsorption ability for CO2. The photoresponsive material could capture CO2 in darkness and release it under ultraviolet irradiation, thus establishing a CO2 “enrichment-release” cycle under dark/light cycles. Upon application of Zr-ABTC onto Chinese little green leaves, scanning electron microscopy (SEM) revealed that the material is distributed around plant stomata, resulting in an 87.5% increase in crop yield compared with the blank control group not treated by Zr-ABTC (dry weight). The photothermal responsive materials created in this article may be used to improve the photosynthetic efficiency and enhance agricultural productivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信