t形线性有机半导体中间层实现高效的镍基钙钛矿太阳能电池

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhihui Wang*, Zhe Wang, Zhaolong Ma, Mengyuan Li, Hui Cheng, Zongyuan Yang, Suhao Yan*, Xueping Zong*, Yonglian Xiong and Qingsong Jiang*, 
{"title":"t形线性有机半导体中间层实现高效的镍基钙钛矿太阳能电池","authors":"Zhihui Wang*,&nbsp;Zhe Wang,&nbsp;Zhaolong Ma,&nbsp;Mengyuan Li,&nbsp;Hui Cheng,&nbsp;Zongyuan Yang,&nbsp;Suhao Yan*,&nbsp;Xueping Zong*,&nbsp;Yonglian Xiong and Qingsong Jiang*,&nbsp;","doi":"10.1021/acssuschemeng.5c06897","DOIUrl":null,"url":null,"abstract":"<p >Interfacial defects and misaligned energy levels represent critical challenges in NiO<sub><i>x</i></sub>-based inverted perovskite solar cells (PSCs), which jointly constrain photovoltaic performance and accelerate perovskite degradation. Herein, a novel T-shaped linear semiconductor (<b>WH14</b>) is developed through a rational vertical π-extension strategy and introduced as an interlayer in NiO<sub><i>x</i></sub>-based PSCs. The fully exposed heteroatoms of <b>WH14</b> enable effective defect passivation and block the oxidation of Ni<sup>&gt;3+</sup> with perovskite at the interface. Meanwhile, the electron-withdrawing nature of the dithienophenazine (DTPA) central core significantly lowers the highest occupied molecular orbital (HOMO) level, facilitating ideal energy alignment for efficient interfacial hole extraction. Consequently, the <b>WH14</b> modified NiO<sub><i>x</i></sub>-based devices achieved a remarkable power conversion efficiency (PCE) of 25.20% along with excellent long-term stability, retaining over 80% of their initial efficiency after being aged for 1200 h in ambient air. This study underscores the potential of molecular engineering in developing linear organic semiconductors to address interfacial challenges and promote the advancement of high-performance NiO<sub><i>x</i></sub>-based inverted PSCs.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 32","pages":"13157–13165"},"PeriodicalIF":7.3000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"T-Shaped Linear Organic Semiconducting Interlayer Enables Highly Efficient NiOx-Based Perovskite Solar Cells\",\"authors\":\"Zhihui Wang*,&nbsp;Zhe Wang,&nbsp;Zhaolong Ma,&nbsp;Mengyuan Li,&nbsp;Hui Cheng,&nbsp;Zongyuan Yang,&nbsp;Suhao Yan*,&nbsp;Xueping Zong*,&nbsp;Yonglian Xiong and Qingsong Jiang*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c06897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Interfacial defects and misaligned energy levels represent critical challenges in NiO<sub><i>x</i></sub>-based inverted perovskite solar cells (PSCs), which jointly constrain photovoltaic performance and accelerate perovskite degradation. Herein, a novel T-shaped linear semiconductor (<b>WH14</b>) is developed through a rational vertical π-extension strategy and introduced as an interlayer in NiO<sub><i>x</i></sub>-based PSCs. The fully exposed heteroatoms of <b>WH14</b> enable effective defect passivation and block the oxidation of Ni<sup>&gt;3+</sup> with perovskite at the interface. Meanwhile, the electron-withdrawing nature of the dithienophenazine (DTPA) central core significantly lowers the highest occupied molecular orbital (HOMO) level, facilitating ideal energy alignment for efficient interfacial hole extraction. Consequently, the <b>WH14</b> modified NiO<sub><i>x</i></sub>-based devices achieved a remarkable power conversion efficiency (PCE) of 25.20% along with excellent long-term stability, retaining over 80% of their initial efficiency after being aged for 1200 h in ambient air. This study underscores the potential of molecular engineering in developing linear organic semiconductors to address interfacial challenges and promote the advancement of high-performance NiO<sub><i>x</i></sub>-based inverted PSCs.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 32\",\"pages\":\"13157–13165\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c06897\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c06897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

界面缺陷和能级错位是niox基倒钙钛矿太阳能电池(PSCs)面临的关键挑战,它们共同限制了光伏性能并加速了钙钛矿的降解。本文通过合理的垂直π扩展策略,开发了一种新型的t形线性半导体(WH14),并将其作为niox基PSCs的中间层引入。充分暴露的WH14杂原子能够有效地钝化缺陷,并在界面处阻止Ni>;3+与钙钛矿的氧化。同时,二噻吩吩嗪(DTPA)中心核的吸电子性质显著降低了最高已占据分子轨道(HOMO)水平,为有效的界面空穴提取提供了理想的能量排列。因此,WH14修饰的niox基器件实现了25.20%的显著功率转换效率(PCE),并具有出色的长期稳定性,在环境空气中老化1200小时后保持了80%以上的初始效率。这项研究强调了分子工程在开发线性有机半导体方面的潜力,以解决界面挑战并促进高性能基于niox的倒置psc的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

T-Shaped Linear Organic Semiconducting Interlayer Enables Highly Efficient NiOx-Based Perovskite Solar Cells

T-Shaped Linear Organic Semiconducting Interlayer Enables Highly Efficient NiOx-Based Perovskite Solar Cells

Interfacial defects and misaligned energy levels represent critical challenges in NiOx-based inverted perovskite solar cells (PSCs), which jointly constrain photovoltaic performance and accelerate perovskite degradation. Herein, a novel T-shaped linear semiconductor (WH14) is developed through a rational vertical π-extension strategy and introduced as an interlayer in NiOx-based PSCs. The fully exposed heteroatoms of WH14 enable effective defect passivation and block the oxidation of Ni>3+ with perovskite at the interface. Meanwhile, the electron-withdrawing nature of the dithienophenazine (DTPA) central core significantly lowers the highest occupied molecular orbital (HOMO) level, facilitating ideal energy alignment for efficient interfacial hole extraction. Consequently, the WH14 modified NiOx-based devices achieved a remarkable power conversion efficiency (PCE) of 25.20% along with excellent long-term stability, retaining over 80% of their initial efficiency after being aged for 1200 h in ambient air. This study underscores the potential of molecular engineering in developing linear organic semiconductors to address interfacial challenges and promote the advancement of high-performance NiOx-based inverted PSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信