机器学习驱动的精准农业尿素甲醛肥料合成:通过ANN-GA优化定制氮素释放

IF 2.9 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zhenglu Yang, Biao Yuan, Yanling Liu, Pan Wu, Changjun Liu and Wei Jiang*, 
{"title":"机器学习驱动的精准农业尿素甲醛肥料合成:通过ANN-GA优化定制氮素释放","authors":"Zhenglu Yang,&nbsp;Biao Yuan,&nbsp;Yanling Liu,&nbsp;Pan Wu,&nbsp;Changjun Liu and Wei Jiang*,&nbsp;","doi":"10.1021/acsagscitech.5c00224","DOIUrl":null,"url":null,"abstract":"<p >Urea-formaldehyde (UF), a prominent slow-release nitrogen fertilizer, faces challenges in production optimization to efficiently meet the varying slow-release needs of different crops. This study employed response surface methodology (RSM) analysis combined with an artificial neural network-genetic algorithm (ANN-GA) prediction to refine the UF polymerization process. Key factors influencing the polymerization process and the slow-release properties of UF products were identified as the urea/formaldehyde molar ratio (U/F) and reaction pH. The ANN-GA model demonstrated superior prediction accuracy over the RSM model, achieving coefficient of determination (<i>R</i><sup>2</sup>) values of 0.9968 for cold water-insoluble substances (CWI) and 0.9979 for hot water-insoluble substances (HWI), representing improvements of 0.6% and 0.43%, respectively. By utilizing a fitness function that incorporated the UF activity index as the objective, the model optimized process parameter combinations, yielding relative errors below 4% between predicted and experimental values. The ANN-GA model facilitated precise control over UF polymerization, enabling the synthesis of short-cycle slow-release UF derived from methylenediurea (MDU) for rapid nutrient delivery and long-cycle UF based on trimethylenetraurea (TMTU) for sustained nutrient release. This study introduces a novel framework for regulating fertilizer manufacturing processes in precision agriculture, employing a “demand-driven → algorithmic optimization → targeted synthesis” approach that provides quick and adaptive solutions.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 8","pages":"1654–1669"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Driven Synthesis of Urea-Formaldehyde Fertilizers for Precision Agriculture: Tailoring Nitrogen Release via ANN-GA Optimization\",\"authors\":\"Zhenglu Yang,&nbsp;Biao Yuan,&nbsp;Yanling Liu,&nbsp;Pan Wu,&nbsp;Changjun Liu and Wei Jiang*,&nbsp;\",\"doi\":\"10.1021/acsagscitech.5c00224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Urea-formaldehyde (UF), a prominent slow-release nitrogen fertilizer, faces challenges in production optimization to efficiently meet the varying slow-release needs of different crops. This study employed response surface methodology (RSM) analysis combined with an artificial neural network-genetic algorithm (ANN-GA) prediction to refine the UF polymerization process. Key factors influencing the polymerization process and the slow-release properties of UF products were identified as the urea/formaldehyde molar ratio (U/F) and reaction pH. The ANN-GA model demonstrated superior prediction accuracy over the RSM model, achieving coefficient of determination (<i>R</i><sup>2</sup>) values of 0.9968 for cold water-insoluble substances (CWI) and 0.9979 for hot water-insoluble substances (HWI), representing improvements of 0.6% and 0.43%, respectively. By utilizing a fitness function that incorporated the UF activity index as the objective, the model optimized process parameter combinations, yielding relative errors below 4% between predicted and experimental values. The ANN-GA model facilitated precise control over UF polymerization, enabling the synthesis of short-cycle slow-release UF derived from methylenediurea (MDU) for rapid nutrient delivery and long-cycle UF based on trimethylenetraurea (TMTU) for sustained nutrient release. This study introduces a novel framework for regulating fertilizer manufacturing processes in precision agriculture, employing a “demand-driven → algorithmic optimization → targeted synthesis” approach that provides quick and adaptive solutions.</p>\",\"PeriodicalId\":93846,\"journal\":{\"name\":\"ACS agricultural science & technology\",\"volume\":\"5 8\",\"pages\":\"1654–1669\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS agricultural science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.5c00224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

脲醛(UF)是一种重要的缓释氮肥,如何有效地满足不同作物的不同缓释需求,面临着生产优化的挑战。本研究采用响应面法(RSM)分析结合人工神经网络遗传算法(ANN-GA)预测优化UF聚合工艺。脲醛摩尔比(U/F)和反应ph是影响聚合过程和UF产物缓释性能的关键因素。ANN-GA模型的预测精度优于RSM模型,冷水不溶性物质(CWI)的决定系数(R2)为0.9968,热水不溶性物质(HWI)的决定系数(R2)为0.9979,分别提高0.6%和0.43%。利用以UF活性指数为目标的适应度函数,对工艺参数组合进行了优化,预测值与实验值的相对误差小于4%。ANN-GA模型可精确控制超滤膜聚合,可合成以亚甲二脲(MDU)为原料的短周期缓释超滤膜,以三甲基三脲(TMTU)为原料的长周期超滤膜,以实现养分的快速释放。本研究引入了一个新的框架来调节精准农业中的肥料生产过程,采用“需求驱动→算法优化→目标合成”的方法,提供了快速和自适应的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Machine Learning-Driven Synthesis of Urea-Formaldehyde Fertilizers for Precision Agriculture: Tailoring Nitrogen Release via ANN-GA Optimization

Machine Learning-Driven Synthesis of Urea-Formaldehyde Fertilizers for Precision Agriculture: Tailoring Nitrogen Release via ANN-GA Optimization

Urea-formaldehyde (UF), a prominent slow-release nitrogen fertilizer, faces challenges in production optimization to efficiently meet the varying slow-release needs of different crops. This study employed response surface methodology (RSM) analysis combined with an artificial neural network-genetic algorithm (ANN-GA) prediction to refine the UF polymerization process. Key factors influencing the polymerization process and the slow-release properties of UF products were identified as the urea/formaldehyde molar ratio (U/F) and reaction pH. The ANN-GA model demonstrated superior prediction accuracy over the RSM model, achieving coefficient of determination (R2) values of 0.9968 for cold water-insoluble substances (CWI) and 0.9979 for hot water-insoluble substances (HWI), representing improvements of 0.6% and 0.43%, respectively. By utilizing a fitness function that incorporated the UF activity index as the objective, the model optimized process parameter combinations, yielding relative errors below 4% between predicted and experimental values. The ANN-GA model facilitated precise control over UF polymerization, enabling the synthesis of short-cycle slow-release UF derived from methylenediurea (MDU) for rapid nutrient delivery and long-cycle UF based on trimethylenetraurea (TMTU) for sustained nutrient release. This study introduces a novel framework for regulating fertilizer manufacturing processes in precision agriculture, employing a “demand-driven → algorithmic optimization → targeted synthesis” approach that provides quick and adaptive solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信