用于量子纠错的玻色子模式的广义数相晶格编码

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dong-Long Hu, Weizhou Cai, Chang-Ling Zou, Ze-Liang Xiang
{"title":"用于量子纠错的玻色子模式的广义数相晶格编码","authors":"Dong-Long Hu, Weizhou Cai, Chang-Ling Zou, Ze-Liang Xiang","doi":"10.1038/s41467-025-62898-1","DOIUrl":null,"url":null,"abstract":"<p>Bosonic systems offer unique advantages for quantum error correction, as a single bosonic mode provides a large Hilbert space to redundantly encode quantum information. However, previous studies have been limited to exploiting symmetries in the quadrature phase space. Here we introduce a unified framework for encoding a qubit utilizing the symmetries in the phase space of number and phase variables of a bosonic mode. The logical codewords form lattice structures in the number-phase space, resulting in rectangular, oblique, and diamond-shaped lattice codes. Notably, oblique and diamond codes exhibit a number-phase vortex effect, where number-shift errors induce discrete phase rotations as syndromes, enabling efficient correction via phase measurements. These codes show significant performance advantages over conventional quadrature codes against dephasing noise in the potential one-way quantum communication applications. Our generalized number-phase codes open up new possibilities for fault-tolerant quantum computation and extending the quantum communication range with bosonic systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized number-phase lattice encoding of a bosonic mode for quantum error correction\",\"authors\":\"Dong-Long Hu, Weizhou Cai, Chang-Ling Zou, Ze-Liang Xiang\",\"doi\":\"10.1038/s41467-025-62898-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bosonic systems offer unique advantages for quantum error correction, as a single bosonic mode provides a large Hilbert space to redundantly encode quantum information. However, previous studies have been limited to exploiting symmetries in the quadrature phase space. Here we introduce a unified framework for encoding a qubit utilizing the symmetries in the phase space of number and phase variables of a bosonic mode. The logical codewords form lattice structures in the number-phase space, resulting in rectangular, oblique, and diamond-shaped lattice codes. Notably, oblique and diamond codes exhibit a number-phase vortex effect, where number-shift errors induce discrete phase rotations as syndromes, enabling efficient correction via phase measurements. These codes show significant performance advantages over conventional quadrature codes against dephasing noise in the potential one-way quantum communication applications. Our generalized number-phase codes open up new possibilities for fault-tolerant quantum computation and extending the quantum communication range with bosonic systems.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62898-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62898-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

玻色子系统为量子纠错提供了独特的优势,因为单个玻色子模式提供了一个大的希尔伯特空间来冗余编码量子信息。然而,以往的研究仅限于利用正交相空间中的对称性。本文介绍了一种统一的框架,利用玻色子模式的数变量和相变量在相空间中的对称性对量子比特进行编码。逻辑码字在数相空间中形成点阵结构,产生矩形、斜点阵和菱形点阵码。值得注意的是,斜码和菱形码表现出数相涡旋效应,其中数移误差导致离散相位旋转作为综合征,从而通过相位测量实现有效校正。在潜在的单向量子通信应用中,这些码在抗消相噪声方面比传统的正交码具有显著的性能优势。我们的广义数相码为容错量子计算和扩展玻色子系统的量子通信范围开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized number-phase lattice encoding of a bosonic mode for quantum error correction

Generalized number-phase lattice encoding of a bosonic mode for quantum error correction

Bosonic systems offer unique advantages for quantum error correction, as a single bosonic mode provides a large Hilbert space to redundantly encode quantum information. However, previous studies have been limited to exploiting symmetries in the quadrature phase space. Here we introduce a unified framework for encoding a qubit utilizing the symmetries in the phase space of number and phase variables of a bosonic mode. The logical codewords form lattice structures in the number-phase space, resulting in rectangular, oblique, and diamond-shaped lattice codes. Notably, oblique and diamond codes exhibit a number-phase vortex effect, where number-shift errors induce discrete phase rotations as syndromes, enabling efficient correction via phase measurements. These codes show significant performance advantages over conventional quadrature codes against dephasing noise in the potential one-way quantum communication applications. Our generalized number-phase codes open up new possibilities for fault-tolerant quantum computation and extending the quantum communication range with bosonic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信