{"title":"用于量子纠错的玻色子模式的广义数相晶格编码","authors":"Dong-Long Hu, Weizhou Cai, Chang-Ling Zou, Ze-Liang Xiang","doi":"10.1038/s41467-025-62898-1","DOIUrl":null,"url":null,"abstract":"<p>Bosonic systems offer unique advantages for quantum error correction, as a single bosonic mode provides a large Hilbert space to redundantly encode quantum information. However, previous studies have been limited to exploiting symmetries in the quadrature phase space. Here we introduce a unified framework for encoding a qubit utilizing the symmetries in the phase space of number and phase variables of a bosonic mode. The logical codewords form lattice structures in the number-phase space, resulting in rectangular, oblique, and diamond-shaped lattice codes. Notably, oblique and diamond codes exhibit a number-phase vortex effect, where number-shift errors induce discrete phase rotations as syndromes, enabling efficient correction via phase measurements. These codes show significant performance advantages over conventional quadrature codes against dephasing noise in the potential one-way quantum communication applications. Our generalized number-phase codes open up new possibilities for fault-tolerant quantum computation and extending the quantum communication range with bosonic systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"18 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized number-phase lattice encoding of a bosonic mode for quantum error correction\",\"authors\":\"Dong-Long Hu, Weizhou Cai, Chang-Ling Zou, Ze-Liang Xiang\",\"doi\":\"10.1038/s41467-025-62898-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bosonic systems offer unique advantages for quantum error correction, as a single bosonic mode provides a large Hilbert space to redundantly encode quantum information. However, previous studies have been limited to exploiting symmetries in the quadrature phase space. Here we introduce a unified framework for encoding a qubit utilizing the symmetries in the phase space of number and phase variables of a bosonic mode. The logical codewords form lattice structures in the number-phase space, resulting in rectangular, oblique, and diamond-shaped lattice codes. Notably, oblique and diamond codes exhibit a number-phase vortex effect, where number-shift errors induce discrete phase rotations as syndromes, enabling efficient correction via phase measurements. These codes show significant performance advantages over conventional quadrature codes against dephasing noise in the potential one-way quantum communication applications. Our generalized number-phase codes open up new possibilities for fault-tolerant quantum computation and extending the quantum communication range with bosonic systems.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62898-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62898-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Generalized number-phase lattice encoding of a bosonic mode for quantum error correction
Bosonic systems offer unique advantages for quantum error correction, as a single bosonic mode provides a large Hilbert space to redundantly encode quantum information. However, previous studies have been limited to exploiting symmetries in the quadrature phase space. Here we introduce a unified framework for encoding a qubit utilizing the symmetries in the phase space of number and phase variables of a bosonic mode. The logical codewords form lattice structures in the number-phase space, resulting in rectangular, oblique, and diamond-shaped lattice codes. Notably, oblique and diamond codes exhibit a number-phase vortex effect, where number-shift errors induce discrete phase rotations as syndromes, enabling efficient correction via phase measurements. These codes show significant performance advantages over conventional quadrature codes against dephasing noise in the potential one-way quantum communication applications. Our generalized number-phase codes open up new possibilities for fault-tolerant quantum computation and extending the quantum communication range with bosonic systems.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.