计算引导大肠杆菌基因组重组及其在纳米聚对苯二甲酸乙二醇酯(PET)生物降解和升级回收中的应用。

IF 14.9 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Paula Vidal, Joan Giménez-Dejoz, Laura Fernandez-Lopez, Sonia Romero, Seyed Amirabbas Nazemi, Miguel Luengo, Jose L Gonzalez-Alfonso, Mireia Martinez-Sugrañes, Ana Robles-Martín, David Almendral, Sergi Roda, Pablo Pérez-García, Luzie Kruse, Karl-Erich Jaeger, Wolfgang R Streit, Francisco J Plou, Martin Floor, Patrick Shahgaldian, Rafael Bargiela, Víctor Guallar, Manuel Ferrer
{"title":"计算引导大肠杆菌基因组重组及其在纳米聚对苯二甲酸乙二醇酯(PET)生物降解和升级回收中的应用。","authors":"Paula Vidal, Joan Giménez-Dejoz, Laura Fernandez-Lopez, Sonia Romero, Seyed Amirabbas Nazemi, Miguel Luengo, Jose L Gonzalez-Alfonso, Mireia Martinez-Sugrañes, Ana Robles-Martín, David Almendral, Sergi Roda, Pablo Pérez-García, Luzie Kruse, Karl-Erich Jaeger, Wolfgang R Streit, Francisco J Plou, Martin Floor, Patrick Shahgaldian, Rafael Bargiela, Víctor Guallar, Manuel Ferrer","doi":"10.1016/j.tibtech.2025.07.008","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous strategies for the biodegradation and upcycling of polyethylene terephthalate (PET) are under investigation. Here, we present a proof-of-concept study for reprogramming the Escherichia coli BL21(DE3) strain to degrade PET nanoparticles (nPET) without introducing foreign DNA and compromising native cellular fitness. In brief, native proteins selected in silico from the genome were repurposed to acquire artificial PETase activity without compromising their function and were subsequently replaced via CRISPR/Cas9 editing. A variant of the transport protein LsrB, selected for its ability to bind PET, was engineered to degrade PET powder (at 37-60°C). Building on LsrB periplasmic localization, we engineered a strain that degrades nPET at 37°C. The strain was further engineered to grow on nPET degradation products and produce valuable compounds. Our method, which is applicable across diverse genomes and microbial chassis, expands the potential of metabolic engineering to address plastic biodegradation and upcycling while reducing reliance on foreign DNA.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computationally guided genome rewiring of Escherichia coli and its application for nanopolyethylene terephthalate (PET) biodegradation and upcycling.\",\"authors\":\"Paula Vidal, Joan Giménez-Dejoz, Laura Fernandez-Lopez, Sonia Romero, Seyed Amirabbas Nazemi, Miguel Luengo, Jose L Gonzalez-Alfonso, Mireia Martinez-Sugrañes, Ana Robles-Martín, David Almendral, Sergi Roda, Pablo Pérez-García, Luzie Kruse, Karl-Erich Jaeger, Wolfgang R Streit, Francisco J Plou, Martin Floor, Patrick Shahgaldian, Rafael Bargiela, Víctor Guallar, Manuel Ferrer\",\"doi\":\"10.1016/j.tibtech.2025.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous strategies for the biodegradation and upcycling of polyethylene terephthalate (PET) are under investigation. Here, we present a proof-of-concept study for reprogramming the Escherichia coli BL21(DE3) strain to degrade PET nanoparticles (nPET) without introducing foreign DNA and compromising native cellular fitness. In brief, native proteins selected in silico from the genome were repurposed to acquire artificial PETase activity without compromising their function and were subsequently replaced via CRISPR/Cas9 editing. A variant of the transport protein LsrB, selected for its ability to bind PET, was engineered to degrade PET powder (at 37-60°C). Building on LsrB periplasmic localization, we engineered a strain that degrades nPET at 37°C. The strain was further engineered to grow on nPET degradation products and produce valuable compounds. Our method, which is applicable across diverse genomes and microbial chassis, expands the potential of metabolic engineering to address plastic biodegradation and upcycling while reducing reliance on foreign DNA.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2025.07.008\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2025.07.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对聚对苯二甲酸乙二醇酯(PET)的生物降解和升级回收的许多策略正在研究中。在这里,我们提出了一项概念验证研究,对大肠杆菌BL21(DE3)菌株进行重编程,以降解PET纳米颗粒(nPET),而不引入外源DNA并损害天然细胞适应性。简而言之,从基因组中选择的天然蛋白质被重新利用,在不损害其功能的情况下获得人工PETase活性,随后通过CRISPR/Cas9编辑取代。转运蛋白LsrB的一种变体,因其结合PET的能力而被选中,被设计用于降解PET粉末(在37-60°C)。在LsrB质周定位的基础上,我们设计了一种在37°C下降解nPET的菌株。该菌株被进一步设计为在nPET降解产物上生长并产生有价值的化合物。我们的方法适用于不同的基因组和微生物底盘,扩大了代谢工程解决塑料生物降解和升级回收的潜力,同时减少了对外源DNA的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computationally guided genome rewiring of Escherichia coli and its application for nanopolyethylene terephthalate (PET) biodegradation and upcycling.

Numerous strategies for the biodegradation and upcycling of polyethylene terephthalate (PET) are under investigation. Here, we present a proof-of-concept study for reprogramming the Escherichia coli BL21(DE3) strain to degrade PET nanoparticles (nPET) without introducing foreign DNA and compromising native cellular fitness. In brief, native proteins selected in silico from the genome were repurposed to acquire artificial PETase activity without compromising their function and were subsequently replaced via CRISPR/Cas9 editing. A variant of the transport protein LsrB, selected for its ability to bind PET, was engineered to degrade PET powder (at 37-60°C). Building on LsrB periplasmic localization, we engineered a strain that degrades nPET at 37°C. The strain was further engineered to grow on nPET degradation products and produce valuable compounds. Our method, which is applicable across diverse genomes and microbial chassis, expands the potential of metabolic engineering to address plastic biodegradation and upcycling while reducing reliance on foreign DNA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信