{"title":"基于混合深度学习和Grad-CAM可解释性的作物叶片病害鲁棒多类分类。","authors":"Sankar Murugesan, Jayaprakash Chinnadurai, Saravanan Srinivasan, Sandeep Kumar Mathivanan, Radha Raman Chandan, Usha Moorthy","doi":"10.1038/s41598-025-14847-7","DOIUrl":null,"url":null,"abstract":"<p><p>The key objective of this study is to propose an effective and accurate deep learning (DL) framework to detect and classify diseases in banana, cherry, and tomato leaves. The performance of multiple pre-trained models is compared against a newly presented model.The experiments used a publicly released dataset of healthy and unhealthy leaves from banana, cherry, and tomato plants. This dataset was uniformly split into training, validation, and test sets to obtain consistent and unbiased model evaluations. The data pre-processing also involved pre-processing steps suitable for DL architectures to keep the input the same among all the models.We use several state-of-the-art pre-trained ConvNets models for the baselines, such as EfficientNetV2, ConvNeXt, Swin Transformer, and Vi-Transformer (ViT), to have an outlook on the performance. A new ConvNet-ViT hybrid model combines the ConvNet and ViT layers for local feature extraction and maintaining the global context. The classifier's performance was reinforced by a 5-fold cross-validation mechanism to avoid overfitting.The proposed Hybrid ConvNet-ViT model outperformed all the compared models evaluated, achieving a testing classification accuracy of 99.29%, which outperforms all the pre-trained models. This finding shows that combining ConvNets' local feature learning with the capability of global representation of the ViT is effective.The result shows that the Hybrid ConvNet-ViT model is an effective and accurate solution in detecting and classifying plant leaf diseases. Its outstanding performance of the state-of-the-art pre-trained top models positions itself as a solid model for practical agricultural use. Fusing the ConvNet and transformer frameworks jointly is beneficial for improving classification performance in image-based disease detection work.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"29955"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356958/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust multiclass classification of crop leaf diseases using hybrid deep learning and Grad-CAM interpretability.\",\"authors\":\"Sankar Murugesan, Jayaprakash Chinnadurai, Saravanan Srinivasan, Sandeep Kumar Mathivanan, Radha Raman Chandan, Usha Moorthy\",\"doi\":\"10.1038/s41598-025-14847-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The key objective of this study is to propose an effective and accurate deep learning (DL) framework to detect and classify diseases in banana, cherry, and tomato leaves. The performance of multiple pre-trained models is compared against a newly presented model.The experiments used a publicly released dataset of healthy and unhealthy leaves from banana, cherry, and tomato plants. This dataset was uniformly split into training, validation, and test sets to obtain consistent and unbiased model evaluations. The data pre-processing also involved pre-processing steps suitable for DL architectures to keep the input the same among all the models.We use several state-of-the-art pre-trained ConvNets models for the baselines, such as EfficientNetV2, ConvNeXt, Swin Transformer, and Vi-Transformer (ViT), to have an outlook on the performance. A new ConvNet-ViT hybrid model combines the ConvNet and ViT layers for local feature extraction and maintaining the global context. The classifier's performance was reinforced by a 5-fold cross-validation mechanism to avoid overfitting.The proposed Hybrid ConvNet-ViT model outperformed all the compared models evaluated, achieving a testing classification accuracy of 99.29%, which outperforms all the pre-trained models. This finding shows that combining ConvNets' local feature learning with the capability of global representation of the ViT is effective.The result shows that the Hybrid ConvNet-ViT model is an effective and accurate solution in detecting and classifying plant leaf diseases. Its outstanding performance of the state-of-the-art pre-trained top models positions itself as a solid model for practical agricultural use. Fusing the ConvNet and transformer frameworks jointly is beneficial for improving classification performance in image-based disease detection work.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"29955\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356958/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-14847-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-14847-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Robust multiclass classification of crop leaf diseases using hybrid deep learning and Grad-CAM interpretability.
The key objective of this study is to propose an effective and accurate deep learning (DL) framework to detect and classify diseases in banana, cherry, and tomato leaves. The performance of multiple pre-trained models is compared against a newly presented model.The experiments used a publicly released dataset of healthy and unhealthy leaves from banana, cherry, and tomato plants. This dataset was uniformly split into training, validation, and test sets to obtain consistent and unbiased model evaluations. The data pre-processing also involved pre-processing steps suitable for DL architectures to keep the input the same among all the models.We use several state-of-the-art pre-trained ConvNets models for the baselines, such as EfficientNetV2, ConvNeXt, Swin Transformer, and Vi-Transformer (ViT), to have an outlook on the performance. A new ConvNet-ViT hybrid model combines the ConvNet and ViT layers for local feature extraction and maintaining the global context. The classifier's performance was reinforced by a 5-fold cross-validation mechanism to avoid overfitting.The proposed Hybrid ConvNet-ViT model outperformed all the compared models evaluated, achieving a testing classification accuracy of 99.29%, which outperforms all the pre-trained models. This finding shows that combining ConvNets' local feature learning with the capability of global representation of the ViT is effective.The result shows that the Hybrid ConvNet-ViT model is an effective and accurate solution in detecting and classifying plant leaf diseases. Its outstanding performance of the state-of-the-art pre-trained top models positions itself as a solid model for practical agricultural use. Fusing the ConvNet and transformer frameworks jointly is beneficial for improving classification performance in image-based disease detection work.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.