{"title":"局部电磁照射下皮肤模型的空间平均吸收功率密度和峰值温升评估。","authors":"Jiawen Zheng, Yu Zhang, Yinliang Diao, Dan Shi","doi":"10.1093/rpd/ncaf096","DOIUrl":null,"url":null,"abstract":"<p><p>Numerical dosimetry for assessments of the absorbed power density (APD) and temperature rise has been conducted using multi-layer skin models, incorporating skin, fat, muscle, and other components, providing a scientific foundation for setting exposure limits. However, the influence of the vasculature on dosimetry outcomes remains underexplored. In this study, we developed a synthetic blood vessel model and integrated it into multi-layer skin models. Electromagnetic computations were performed, followed by steady-state temperature rise evaluations using the Pennes bioheat transfer equation across a frequency range of 3 to 30 GHz. To quantify the effect of vascular modeling on dosimetry results, simulations incorporating vasculature with varying endpoint diameters were compared to those without vasculature. Results showed that the effect of vascular modeling on peak spatial-averaged APD was negligible, and its influence on peak temperature rise was ~8% at 3 GHz, decreasing to less than <3% above 6 GHz. And the effect of the endpoint diameter is marginal. These variations are smaller than those previously reported due to changes in tissue thickness and dielectric or thermal properties. While the effect on peak temperature rise is modest, including vasculature helps refine localized thermal distributions and may inform future improvements in anatomical modeling.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":" ","pages":"1090-1102"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized eletromagnetic exposure.\",\"authors\":\"Jiawen Zheng, Yu Zhang, Yinliang Diao, Dan Shi\",\"doi\":\"10.1093/rpd/ncaf096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerical dosimetry for assessments of the absorbed power density (APD) and temperature rise has been conducted using multi-layer skin models, incorporating skin, fat, muscle, and other components, providing a scientific foundation for setting exposure limits. However, the influence of the vasculature on dosimetry outcomes remains underexplored. In this study, we developed a synthetic blood vessel model and integrated it into multi-layer skin models. Electromagnetic computations were performed, followed by steady-state temperature rise evaluations using the Pennes bioheat transfer equation across a frequency range of 3 to 30 GHz. To quantify the effect of vascular modeling on dosimetry results, simulations incorporating vasculature with varying endpoint diameters were compared to those without vasculature. Results showed that the effect of vascular modeling on peak spatial-averaged APD was negligible, and its influence on peak temperature rise was ~8% at 3 GHz, decreasing to less than <3% above 6 GHz. And the effect of the endpoint diameter is marginal. These variations are smaller than those previously reported due to changes in tissue thickness and dielectric or thermal properties. While the effect on peak temperature rise is modest, including vasculature helps refine localized thermal distributions and may inform future improvements in anatomical modeling.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":\" \",\"pages\":\"1090-1102\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncaf096\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncaf096","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized eletromagnetic exposure.
Numerical dosimetry for assessments of the absorbed power density (APD) and temperature rise has been conducted using multi-layer skin models, incorporating skin, fat, muscle, and other components, providing a scientific foundation for setting exposure limits. However, the influence of the vasculature on dosimetry outcomes remains underexplored. In this study, we developed a synthetic blood vessel model and integrated it into multi-layer skin models. Electromagnetic computations were performed, followed by steady-state temperature rise evaluations using the Pennes bioheat transfer equation across a frequency range of 3 to 30 GHz. To quantify the effect of vascular modeling on dosimetry results, simulations incorporating vasculature with varying endpoint diameters were compared to those without vasculature. Results showed that the effect of vascular modeling on peak spatial-averaged APD was negligible, and its influence on peak temperature rise was ~8% at 3 GHz, decreasing to less than <3% above 6 GHz. And the effect of the endpoint diameter is marginal. These variations are smaller than those previously reported due to changes in tissue thickness and dielectric or thermal properties. While the effect on peak temperature rise is modest, including vasculature helps refine localized thermal distributions and may inform future improvements in anatomical modeling.
期刊介绍:
Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.