支持超表面的小型化定量相位成像系统。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-08-15 DOI:10.1364/OL.564447
Wenyu Chen, Xiangyu Zhao, Hui Deng, Liang Gao, Jinlong Zhu
{"title":"支持超表面的小型化定量相位成像系统。","authors":"Wenyu Chen, Xiangyu Zhao, Hui Deng, Liang Gao, Jinlong Zhu","doi":"10.1364/OL.564447","DOIUrl":null,"url":null,"abstract":"<p><p>Miniaturization of quantitative phase imaging systems is crucial for advancing point-of-care diagnostics and enabling real-time, in-line inspection of semiconductor wafer defects. In this work, we propose a miniaturized quantitative phase imaging system based on a metasurface. The metasurface, comprising a pixelated deflector array and multilayer thin films, converts the spatial frequencies of incident wavefronts into intensity variations, thereby enabling single-shot quantitative phase imaging. By optimizing the spatial frequency-dependent transmittance of multilayer thin films, we design and simulate a metasurface with a high numerical aperture of up to 0.2. Explicitly, we have numerically validated the phase imaging capability of the proposed system. Our work paves the way for the miniaturization of optical measurement systems.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 16","pages":"4950-4953"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metasurface-enabled miniaturized quantitative phase imaging system.\",\"authors\":\"Wenyu Chen, Xiangyu Zhao, Hui Deng, Liang Gao, Jinlong Zhu\",\"doi\":\"10.1364/OL.564447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Miniaturization of quantitative phase imaging systems is crucial for advancing point-of-care diagnostics and enabling real-time, in-line inspection of semiconductor wafer defects. In this work, we propose a miniaturized quantitative phase imaging system based on a metasurface. The metasurface, comprising a pixelated deflector array and multilayer thin films, converts the spatial frequencies of incident wavefronts into intensity variations, thereby enabling single-shot quantitative phase imaging. By optimizing the spatial frequency-dependent transmittance of multilayer thin films, we design and simulate a metasurface with a high numerical aperture of up to 0.2. Explicitly, we have numerically validated the phase imaging capability of the proposed system. Our work paves the way for the miniaturization of optical measurement systems.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 16\",\"pages\":\"4950-4953\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.564447\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.564447","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

定量相位成像系统的小型化对于推进现场诊断和实现半导体晶圆缺陷的实时在线检测至关重要。在这项工作中,我们提出了一种基于超表面的小型化定量相位成像系统。该超表面包括像素化偏转器阵列和多层薄膜,可将入射波前的空间频率转换为强度变化,从而实现单次定量相位成像。通过优化多层薄膜的空间频率相关透射率,我们设计并模拟了具有高达0.2的高数值孔径的超表面。明确地,我们已经数值验证了所提出的系统的相位成像能力。我们的工作为光学测量系统的小型化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metasurface-enabled miniaturized quantitative phase imaging system.

Miniaturization of quantitative phase imaging systems is crucial for advancing point-of-care diagnostics and enabling real-time, in-line inspection of semiconductor wafer defects. In this work, we propose a miniaturized quantitative phase imaging system based on a metasurface. The metasurface, comprising a pixelated deflector array and multilayer thin films, converts the spatial frequencies of incident wavefronts into intensity variations, thereby enabling single-shot quantitative phase imaging. By optimizing the spatial frequency-dependent transmittance of multilayer thin films, we design and simulate a metasurface with a high numerical aperture of up to 0.2. Explicitly, we have numerically validated the phase imaging capability of the proposed system. Our work paves the way for the miniaturization of optical measurement systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信