Jiahui Xu , Yueqiong Lao , Wendi Zhang , Lincao Chen , Hao Zhang , Hongbin Liu , Ting Yan , Ruo Huang , Yangzhi Xu , Liangying Ye , Fachao Zhi , Hui Yang
{"title":"小檗碱通过增加嗜粘阿克曼氏菌的丰度来减轻代谢功能障碍相关的脂肪性肝炎。","authors":"Jiahui Xu , Yueqiong Lao , Wendi Zhang , Lincao Chen , Hao Zhang , Hongbin Liu , Ting Yan , Ruo Huang , Yangzhi Xu , Liangying Ye , Fachao Zhi , Hui Yang","doi":"10.1016/j.jnutbio.2025.110069","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic dysfunction-associated steatohepatitis (MASH) is associated with intestinal barrier defects and gut microbiota dysbiosis. The gut commensal bacterium <em>Akkermansia muciniphila</em> (Akk) maintains intestinal barrier integrity and improves MASH-related metabolic syndromes. Berberine (BBR), a traditional Chinese medicine, shows promise in treating MASH. However, research on drugs that target Akk regulation and its underlying mechanisms remains limited. This study investigates the mechanisms by which BBR regulates Akk in MASH. We fed C57BL/6 J male mice a methionine-choline-deficient (MCD) diet for 6 weeks to establish the MASH mouse models. The gut microbiota was analyzed using 16S rRNA sequencing and bacterial quantification measured by qPCR analysis. An antibiotic cocktail (Abx) and fecal microbiota transplantation (FMT) were applied to modulate gut microbiota. Results showed that BBR reduced hepatic and colonic inflammation, preserved intestinal barrier integrity and prevented microbiota translocation into the liver. The 16S rRNA sequencing and qPCR analysis revealed a significant increase in Akk abundance in fecal samples following BBR treatment. Mechanistically, BBR did not promote Akk growth directly, but it reduced the bacterial load and enhanced MUC2 expression, thereby facilitating Akk colonization indirectly. While disruption of the gut microbiota by antibiotics treatment weakened the therapeutic effect of berberine on MASH, transplanting of the fecal microbiota from BBR-treated mice could mitigate MASH in antibiotic-treated mice. Finally, BBR and Akk exhibited synergistic therapeutic effects against MASH. Our study illustrated that BBR alleviates MASH mice by enhancing Akk abundance and restoring intestinal barrier integrity. BBR and Akk combination therapy would be a promising strategy for MASH prevention.</div></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"146 ","pages":"Article 110069"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Berberine alleviates metabolic dysfunction-associated steatohepatitis by enhancing the abundance of Akkermansia muciniphila\",\"authors\":\"Jiahui Xu , Yueqiong Lao , Wendi Zhang , Lincao Chen , Hao Zhang , Hongbin Liu , Ting Yan , Ruo Huang , Yangzhi Xu , Liangying Ye , Fachao Zhi , Hui Yang\",\"doi\":\"10.1016/j.jnutbio.2025.110069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metabolic dysfunction-associated steatohepatitis (MASH) is associated with intestinal barrier defects and gut microbiota dysbiosis. The gut commensal bacterium <em>Akkermansia muciniphila</em> (Akk) maintains intestinal barrier integrity and improves MASH-related metabolic syndromes. Berberine (BBR), a traditional Chinese medicine, shows promise in treating MASH. However, research on drugs that target Akk regulation and its underlying mechanisms remains limited. This study investigates the mechanisms by which BBR regulates Akk in MASH. We fed C57BL/6 J male mice a methionine-choline-deficient (MCD) diet for 6 weeks to establish the MASH mouse models. The gut microbiota was analyzed using 16S rRNA sequencing and bacterial quantification measured by qPCR analysis. An antibiotic cocktail (Abx) and fecal microbiota transplantation (FMT) were applied to modulate gut microbiota. Results showed that BBR reduced hepatic and colonic inflammation, preserved intestinal barrier integrity and prevented microbiota translocation into the liver. The 16S rRNA sequencing and qPCR analysis revealed a significant increase in Akk abundance in fecal samples following BBR treatment. Mechanistically, BBR did not promote Akk growth directly, but it reduced the bacterial load and enhanced MUC2 expression, thereby facilitating Akk colonization indirectly. While disruption of the gut microbiota by antibiotics treatment weakened the therapeutic effect of berberine on MASH, transplanting of the fecal microbiota from BBR-treated mice could mitigate MASH in antibiotic-treated mice. Finally, BBR and Akk exhibited synergistic therapeutic effects against MASH. Our study illustrated that BBR alleviates MASH mice by enhancing Akk abundance and restoring intestinal barrier integrity. BBR and Akk combination therapy would be a promising strategy for MASH prevention.</div></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"146 \",\"pages\":\"Article 110069\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286325002311\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286325002311","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Berberine alleviates metabolic dysfunction-associated steatohepatitis by enhancing the abundance of Akkermansia muciniphila
Metabolic dysfunction-associated steatohepatitis (MASH) is associated with intestinal barrier defects and gut microbiota dysbiosis. The gut commensal bacterium Akkermansia muciniphila (Akk) maintains intestinal barrier integrity and improves MASH-related metabolic syndromes. Berberine (BBR), a traditional Chinese medicine, shows promise in treating MASH. However, research on drugs that target Akk regulation and its underlying mechanisms remains limited. This study investigates the mechanisms by which BBR regulates Akk in MASH. We fed C57BL/6 J male mice a methionine-choline-deficient (MCD) diet for 6 weeks to establish the MASH mouse models. The gut microbiota was analyzed using 16S rRNA sequencing and bacterial quantification measured by qPCR analysis. An antibiotic cocktail (Abx) and fecal microbiota transplantation (FMT) were applied to modulate gut microbiota. Results showed that BBR reduced hepatic and colonic inflammation, preserved intestinal barrier integrity and prevented microbiota translocation into the liver. The 16S rRNA sequencing and qPCR analysis revealed a significant increase in Akk abundance in fecal samples following BBR treatment. Mechanistically, BBR did not promote Akk growth directly, but it reduced the bacterial load and enhanced MUC2 expression, thereby facilitating Akk colonization indirectly. While disruption of the gut microbiota by antibiotics treatment weakened the therapeutic effect of berberine on MASH, transplanting of the fecal microbiota from BBR-treated mice could mitigate MASH in antibiotic-treated mice. Finally, BBR and Akk exhibited synergistic therapeutic effects against MASH. Our study illustrated that BBR alleviates MASH mice by enhancing Akk abundance and restoring intestinal barrier integrity. BBR and Akk combination therapy would be a promising strategy for MASH prevention.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.