{"title":"水仙碱通过激活线粒体自噬减轻高糖诱导的人晶状体上皮细胞凋亡。","authors":"Guijia Wu , Xiteng Chen , Wei Wang , Zhenyu Kou, Han Mao, Yijing Wang, Lijie Dong, Tingting Lin, Fang Tian","doi":"10.1016/j.exer.2025.110568","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic cataract (DC) is a prevalent complication of diabetes. This condition often leads to significant visual impairment and, in some cases, blindness. Recent studies have highlighted the potential protective effects of natural plant extracts in the context of DC. Stachydrine (STA), an alkaloid derived from Leonurus heterophyllus Sweet, has been identified as a natural compound with superior bioavailability and fewer side effects than conventional antioxidants. However, its protective role in high-glucose-induced lens epithelial cell damage remains to be fully elucidated.</div><div>In this study, we established a high-glucose model using HLE-B3 cells and assessed apoptosis following STA treatment. Mitochondrial network morphology was analyzed using the ImageJ software. To further investigate the role of autophagy in STA's effects, we employed the autophagy inhibitor 3-Methyladenine (3-MA). Our results indicated that high glucose exposure decreased autophagosome formation and lysosomal activity, while STA treatment significantly increased both. Furthermore, STA enhanced LC3B expression and reduced P62 levels, counteracting the effects of high glucose. Regarding mitochondrial morphology, STA effectively restored the shape, branching, and area, all of which were diminished by high glucose exposure.</div><div>Additionally, STA effectively ameliorated mitochondrial network damage induced by high glucose. Notably, when the cells were treated with 3-MA, STA's protective effects on apoptosis and mitochondrial morphology were significantly reversed. In conclusion, our findings suggest that STA exerts protective effects against high-glucose-induced damage by regulating mitophagy, and this autophagy-dependent mechanism may hold therapeutic potential for the treatment of diabetic cataract.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"260 ","pages":"Article 110568"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stachydrine mitigates high glucose-induced apoptosis in human lens epithelial cells by activating mitophagy\",\"authors\":\"Guijia Wu , Xiteng Chen , Wei Wang , Zhenyu Kou, Han Mao, Yijing Wang, Lijie Dong, Tingting Lin, Fang Tian\",\"doi\":\"10.1016/j.exer.2025.110568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diabetic cataract (DC) is a prevalent complication of diabetes. This condition often leads to significant visual impairment and, in some cases, blindness. Recent studies have highlighted the potential protective effects of natural plant extracts in the context of DC. Stachydrine (STA), an alkaloid derived from Leonurus heterophyllus Sweet, has been identified as a natural compound with superior bioavailability and fewer side effects than conventional antioxidants. However, its protective role in high-glucose-induced lens epithelial cell damage remains to be fully elucidated.</div><div>In this study, we established a high-glucose model using HLE-B3 cells and assessed apoptosis following STA treatment. Mitochondrial network morphology was analyzed using the ImageJ software. To further investigate the role of autophagy in STA's effects, we employed the autophagy inhibitor 3-Methyladenine (3-MA). Our results indicated that high glucose exposure decreased autophagosome formation and lysosomal activity, while STA treatment significantly increased both. Furthermore, STA enhanced LC3B expression and reduced P62 levels, counteracting the effects of high glucose. Regarding mitochondrial morphology, STA effectively restored the shape, branching, and area, all of which were diminished by high glucose exposure.</div><div>Additionally, STA effectively ameliorated mitochondrial network damage induced by high glucose. Notably, when the cells were treated with 3-MA, STA's protective effects on apoptosis and mitochondrial morphology were significantly reversed. In conclusion, our findings suggest that STA exerts protective effects against high-glucose-induced damage by regulating mitophagy, and this autophagy-dependent mechanism may hold therapeutic potential for the treatment of diabetic cataract.</div></div>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"260 \",\"pages\":\"Article 110568\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014483525003392\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525003392","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Stachydrine mitigates high glucose-induced apoptosis in human lens epithelial cells by activating mitophagy
Diabetic cataract (DC) is a prevalent complication of diabetes. This condition often leads to significant visual impairment and, in some cases, blindness. Recent studies have highlighted the potential protective effects of natural plant extracts in the context of DC. Stachydrine (STA), an alkaloid derived from Leonurus heterophyllus Sweet, has been identified as a natural compound with superior bioavailability and fewer side effects than conventional antioxidants. However, its protective role in high-glucose-induced lens epithelial cell damage remains to be fully elucidated.
In this study, we established a high-glucose model using HLE-B3 cells and assessed apoptosis following STA treatment. Mitochondrial network morphology was analyzed using the ImageJ software. To further investigate the role of autophagy in STA's effects, we employed the autophagy inhibitor 3-Methyladenine (3-MA). Our results indicated that high glucose exposure decreased autophagosome formation and lysosomal activity, while STA treatment significantly increased both. Furthermore, STA enhanced LC3B expression and reduced P62 levels, counteracting the effects of high glucose. Regarding mitochondrial morphology, STA effectively restored the shape, branching, and area, all of which were diminished by high glucose exposure.
Additionally, STA effectively ameliorated mitochondrial network damage induced by high glucose. Notably, when the cells were treated with 3-MA, STA's protective effects on apoptosis and mitochondrial morphology were significantly reversed. In conclusion, our findings suggest that STA exerts protective effects against high-glucose-induced damage by regulating mitophagy, and this autophagy-dependent mechanism may hold therapeutic potential for the treatment of diabetic cataract.
期刊介绍:
The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.