Longbo Li, Aidan Wirrick, Michael D Pun, Christine L Lovingier, Fabio Gallazzi, Cyril O Y Fong, Lisa Watkinson, Terry L Carmack, Mikayla Rodgers, Katherine Tucker, Khanh-Van Ho, Carolyn J Anderson
{"title":"点击化学键对靶向黑色素瘤的白蛋白结合177Lu-DOTAGA-pIBA-LLP2A类似物生物学行为的影响","authors":"Longbo Li, Aidan Wirrick, Michael D Pun, Christine L Lovingier, Fabio Gallazzi, Cyril O Y Fong, Lisa Watkinson, Terry L Carmack, Mikayla Rodgers, Katherine Tucker, Khanh-Van Ho, Carolyn J Anderson","doi":"10.1021/acs.bioconjchem.5c00277","DOIUrl":null,"url":null,"abstract":"<p><p>The transmembrane integrin, very late antigen-4 (VLA-4), which is a critical integrin involved in promoting tumor progression, angiogenesis, and metastasis, is overexpressed in metastatic melanoma. The peptidomimetic LLP2A has a high binding affinity to VLA-4 and is used as a radiopharmaceutical targeting agent for imaging and therapy. Previous studies demonstrated that the albumin-binding compound, [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-PEG<sub>4</sub>-LLP2A, significantly improved tumor retention and blood circulation time but resulted in lower tumor-to-nontumor tissue ratios compared to the nonalbumin-binding compound, [<sup>177</sup>Lu]Lu-DOTAGA-PEG<sub>4</sub>-LLP2A. To streamline the synthesis of VLA-4 targeting molecules as therapeutic agents and allow a modular approach, we investigated three click chemistry linkers for preparing DOTAGA-pIBA-PEG<sub>4</sub>-LLP2A analogues: [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-TCO-tetrazine-PEG<sub>4</sub>-LLP2A ([<sup>177</sup>Lu]Lu-<b>1</b>), [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-BCN-azide-PEG<sub>4</sub>-LLP2A ([<sup>177</sup>Lu]Lu-<b>2</b>), and [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-DBCO-azide-PEG<sub>4</sub>-LLP2A ([<sup>177</sup>Lu]Lu-<b>3</b>). Determining the click linkage that provides optimal synthesis ease and pharmacokinetics will allow us to readily produce additional VLA-4 targeting radiopharmaceuticals. Saturation binding assays demonstrated high binding affinity of [<sup>177</sup>Lu]Lu-<b>1</b>, [<sup>177</sup>Lu]Lu-<b>2</b>, and [<sup>177</sup>Lu]Lu-<b>3</b> to VLA-4 in B16F10 cells, with <i>K</i><sub>d</sub> = 1.2 ± 0.2, 0.8 ± 0.4, and 1.6 ± 0.5 nM, respectively. Biodistribution of [<sup>177</sup>Lu]Lu-<b>1</b> showed peak tumor uptake at 24 h (12.2 ± 0.7%IA/g) and retention to 96 h (9.5 ± 1.7%IA/g), while [<sup>177</sup>Lu]Lu-<b>2</b> peaked at 48 h (13.5 ± 2.2%IA/g) and gradually decreased (9.93 ± 3.3%IA/g at 96 h). [<sup>177</sup>Lu]Lu-<b>3</b> peaked at 48 h (16.9 ± 3.9%IA/g) and was retained to 96 h (14.8 ± 3.8%IA/g). Compared with [<sup>177</sup>Lu]Lu-<b>1</b> and [<sup>177</sup>Lu]Lu-<b>3</b>, [<sup>177</sup>Lu]Lu-<b>2</b> cleared more rapidly from normal tissues. [<sup>177</sup>Lu]Lu-<b>2</b> showed higher tumor-to-kidney ratios compared to [<sup>177</sup>Lu]Lu-<b>1</b> at all time points and higher tumor-to-liver ratios up to 96 h. [<sup>177</sup>Lu]Lu-<b>2</b> also showed higher tumor-to-liver ratios compared to [<sup>177</sup>Lu]Lu-<b>3</b> up to 48 h. The tumor can be clearly visualized with all compounds using SPECT/CT. The BCN click linkage ([<sup>177</sup>Lu]Lu-<b>2</b>) will be applied in future compounds with other targeting ligands, radionuclides, albumin binders, and chelators.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Click Chemistry Linkages on the Biological Behavior of Albumin-Binding <sup>177</sup>Lu-DOTAGA-pIBA-LLP2A Analogues Targeting Melanoma.\",\"authors\":\"Longbo Li, Aidan Wirrick, Michael D Pun, Christine L Lovingier, Fabio Gallazzi, Cyril O Y Fong, Lisa Watkinson, Terry L Carmack, Mikayla Rodgers, Katherine Tucker, Khanh-Van Ho, Carolyn J Anderson\",\"doi\":\"10.1021/acs.bioconjchem.5c00277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transmembrane integrin, very late antigen-4 (VLA-4), which is a critical integrin involved in promoting tumor progression, angiogenesis, and metastasis, is overexpressed in metastatic melanoma. The peptidomimetic LLP2A has a high binding affinity to VLA-4 and is used as a radiopharmaceutical targeting agent for imaging and therapy. Previous studies demonstrated that the albumin-binding compound, [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-PEG<sub>4</sub>-LLP2A, significantly improved tumor retention and blood circulation time but resulted in lower tumor-to-nontumor tissue ratios compared to the nonalbumin-binding compound, [<sup>177</sup>Lu]Lu-DOTAGA-PEG<sub>4</sub>-LLP2A. To streamline the synthesis of VLA-4 targeting molecules as therapeutic agents and allow a modular approach, we investigated three click chemistry linkers for preparing DOTAGA-pIBA-PEG<sub>4</sub>-LLP2A analogues: [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-TCO-tetrazine-PEG<sub>4</sub>-LLP2A ([<sup>177</sup>Lu]Lu-<b>1</b>), [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-BCN-azide-PEG<sub>4</sub>-LLP2A ([<sup>177</sup>Lu]Lu-<b>2</b>), and [<sup>177</sup>Lu]Lu-DOTAGA-pIBA-DBCO-azide-PEG<sub>4</sub>-LLP2A ([<sup>177</sup>Lu]Lu-<b>3</b>). Determining the click linkage that provides optimal synthesis ease and pharmacokinetics will allow us to readily produce additional VLA-4 targeting radiopharmaceuticals. Saturation binding assays demonstrated high binding affinity of [<sup>177</sup>Lu]Lu-<b>1</b>, [<sup>177</sup>Lu]Lu-<b>2</b>, and [<sup>177</sup>Lu]Lu-<b>3</b> to VLA-4 in B16F10 cells, with <i>K</i><sub>d</sub> = 1.2 ± 0.2, 0.8 ± 0.4, and 1.6 ± 0.5 nM, respectively. Biodistribution of [<sup>177</sup>Lu]Lu-<b>1</b> showed peak tumor uptake at 24 h (12.2 ± 0.7%IA/g) and retention to 96 h (9.5 ± 1.7%IA/g), while [<sup>177</sup>Lu]Lu-<b>2</b> peaked at 48 h (13.5 ± 2.2%IA/g) and gradually decreased (9.93 ± 3.3%IA/g at 96 h). [<sup>177</sup>Lu]Lu-<b>3</b> peaked at 48 h (16.9 ± 3.9%IA/g) and was retained to 96 h (14.8 ± 3.8%IA/g). Compared with [<sup>177</sup>Lu]Lu-<b>1</b> and [<sup>177</sup>Lu]Lu-<b>3</b>, [<sup>177</sup>Lu]Lu-<b>2</b> cleared more rapidly from normal tissues. [<sup>177</sup>Lu]Lu-<b>2</b> showed higher tumor-to-kidney ratios compared to [<sup>177</sup>Lu]Lu-<b>1</b> at all time points and higher tumor-to-liver ratios up to 96 h. [<sup>177</sup>Lu]Lu-<b>2</b> also showed higher tumor-to-liver ratios compared to [<sup>177</sup>Lu]Lu-<b>3</b> up to 48 h. The tumor can be clearly visualized with all compounds using SPECT/CT. The BCN click linkage ([<sup>177</sup>Lu]Lu-<b>2</b>) will be applied in future compounds with other targeting ligands, radionuclides, albumin binders, and chelators.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.5c00277\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.5c00277","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Effect of Click Chemistry Linkages on the Biological Behavior of Albumin-Binding 177Lu-DOTAGA-pIBA-LLP2A Analogues Targeting Melanoma.
The transmembrane integrin, very late antigen-4 (VLA-4), which is a critical integrin involved in promoting tumor progression, angiogenesis, and metastasis, is overexpressed in metastatic melanoma. The peptidomimetic LLP2A has a high binding affinity to VLA-4 and is used as a radiopharmaceutical targeting agent for imaging and therapy. Previous studies demonstrated that the albumin-binding compound, [177Lu]Lu-DOTAGA-pIBA-PEG4-LLP2A, significantly improved tumor retention and blood circulation time but resulted in lower tumor-to-nontumor tissue ratios compared to the nonalbumin-binding compound, [177Lu]Lu-DOTAGA-PEG4-LLP2A. To streamline the synthesis of VLA-4 targeting molecules as therapeutic agents and allow a modular approach, we investigated three click chemistry linkers for preparing DOTAGA-pIBA-PEG4-LLP2A analogues: [177Lu]Lu-DOTAGA-pIBA-TCO-tetrazine-PEG4-LLP2A ([177Lu]Lu-1), [177Lu]Lu-DOTAGA-pIBA-BCN-azide-PEG4-LLP2A ([177Lu]Lu-2), and [177Lu]Lu-DOTAGA-pIBA-DBCO-azide-PEG4-LLP2A ([177Lu]Lu-3). Determining the click linkage that provides optimal synthesis ease and pharmacokinetics will allow us to readily produce additional VLA-4 targeting radiopharmaceuticals. Saturation binding assays demonstrated high binding affinity of [177Lu]Lu-1, [177Lu]Lu-2, and [177Lu]Lu-3 to VLA-4 in B16F10 cells, with Kd = 1.2 ± 0.2, 0.8 ± 0.4, and 1.6 ± 0.5 nM, respectively. Biodistribution of [177Lu]Lu-1 showed peak tumor uptake at 24 h (12.2 ± 0.7%IA/g) and retention to 96 h (9.5 ± 1.7%IA/g), while [177Lu]Lu-2 peaked at 48 h (13.5 ± 2.2%IA/g) and gradually decreased (9.93 ± 3.3%IA/g at 96 h). [177Lu]Lu-3 peaked at 48 h (16.9 ± 3.9%IA/g) and was retained to 96 h (14.8 ± 3.8%IA/g). Compared with [177Lu]Lu-1 and [177Lu]Lu-3, [177Lu]Lu-2 cleared more rapidly from normal tissues. [177Lu]Lu-2 showed higher tumor-to-kidney ratios compared to [177Lu]Lu-1 at all time points and higher tumor-to-liver ratios up to 96 h. [177Lu]Lu-2 also showed higher tumor-to-liver ratios compared to [177Lu]Lu-3 up to 48 h. The tumor can be clearly visualized with all compounds using SPECT/CT. The BCN click linkage ([177Lu]Lu-2) will be applied in future compounds with other targeting ligands, radionuclides, albumin binders, and chelators.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.