小型超宽带VHF/UHF单极天线与集成匹配网络的频谱监测应用

IF 1.2 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Asaf Khan, Qunsheng Cao, Hasan Raza, Gulab Shah, Afzal Ahmed, Hang Yuuan
{"title":"小型超宽带VHF/UHF单极天线与集成匹配网络的频谱监测应用","authors":"Asaf Khan,&nbsp;Qunsheng Cao,&nbsp;Hasan Raza,&nbsp;Gulab Shah,&nbsp;Afzal Ahmed,&nbsp;Hang Yuuan","doi":"10.1002/mop.70355","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a novel, extremely low-profile, miniaturized monopole antenna for spectrum monitoring applications. The antenna achieves an unprecedented 100:1 impedance bandwidth (30–3000 MHz), corresponding to a fractional bandwidth of 196%, with a compact size of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.03</mn>\n \n <mi>λ</mi>\n \n <mo>×</mo>\n \n <mn>0.03</mn>\n \n <mi>λ</mi>\n \n <mo>×</mo>\n \n <mn>0.00015</mn>\n \n <mi>λ</mi>\n </mrow>\n </mrow>\n <annotation> $0.03\\lambda \\times 0.03\\lambda \\times 0.00015\\lambda $</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>λ</mi>\n </mrow>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math> is the wavelength at the lowest operating frequency. To address size, weight, and power (SWaP) constraints while extending operation into the challenging 30–300 MHz band, a multi-stage lumped-element matching network is integrated on the antenna's back side. This dual-path matching network enables Ant. 5 (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.03</mn>\n \n <mi>λ</mi>\n </mrow>\n </mrow>\n <annotation> $0.03\\lambda $</annotation>\n </semantics></math>) to match the low-frequency performance of a much larger antenna (Ant. 4, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.24</mn>\n \n <mi>λ</mi>\n </mrow>\n </mrow>\n <annotation> $0.24\\lambda $</annotation>\n </semantics></math>), effectively overcoming the size-bandwidth limitation. The antenna achieves a peak gain of 3.6 dBi at 800 MHz and maintains gain above 0 dBi from 360 to 3000 MHz. Measured VSWR remains below 3 from 30 to 38 MHz and below 2 across the remaining of the operational band. Simulated and measured results show excellent agreement, validating the design's suitability for SWaP-constrained platforms such as mobile, airborne, and densely deployed systems. This study offers a transformative solution for broadband spectrum monitoring and direction-finding arrays.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized Super Wideband VHF/UHF Monopole Antenna With Integrated Matching Network for Spectrum Monitoring Applications\",\"authors\":\"Asaf Khan,&nbsp;Qunsheng Cao,&nbsp;Hasan Raza,&nbsp;Gulab Shah,&nbsp;Afzal Ahmed,&nbsp;Hang Yuuan\",\"doi\":\"10.1002/mop.70355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This paper presents a novel, extremely low-profile, miniaturized monopole antenna for spectrum monitoring applications. The antenna achieves an unprecedented 100:1 impedance bandwidth (30–3000 MHz), corresponding to a fractional bandwidth of 196%, with a compact size of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0.03</mn>\\n \\n <mi>λ</mi>\\n \\n <mo>×</mo>\\n \\n <mn>0.03</mn>\\n \\n <mi>λ</mi>\\n \\n <mo>×</mo>\\n \\n <mn>0.00015</mn>\\n \\n <mi>λ</mi>\\n </mrow>\\n </mrow>\\n <annotation> $0.03\\\\lambda \\\\times 0.03\\\\lambda \\\\times 0.00015\\\\lambda $</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math> is the wavelength at the lowest operating frequency. To address size, weight, and power (SWaP) constraints while extending operation into the challenging 30–300 MHz band, a multi-stage lumped-element matching network is integrated on the antenna's back side. This dual-path matching network enables Ant. 5 (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0.03</mn>\\n \\n <mi>λ</mi>\\n </mrow>\\n </mrow>\\n <annotation> $0.03\\\\lambda $</annotation>\\n </semantics></math>) to match the low-frequency performance of a much larger antenna (Ant. 4, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0.24</mn>\\n \\n <mi>λ</mi>\\n </mrow>\\n </mrow>\\n <annotation> $0.24\\\\lambda $</annotation>\\n </semantics></math>), effectively overcoming the size-bandwidth limitation. The antenna achieves a peak gain of 3.6 dBi at 800 MHz and maintains gain above 0 dBi from 360 to 3000 MHz. Measured VSWR remains below 3 from 30 to 38 MHz and below 2 across the remaining of the operational band. Simulated and measured results show excellent agreement, validating the design's suitability for SWaP-constrained platforms such as mobile, airborne, and densely deployed systems. This study offers a transformative solution for broadband spectrum monitoring and direction-finding arrays.</p>\\n </div>\",\"PeriodicalId\":18562,\"journal\":{\"name\":\"Microwave and Optical Technology Letters\",\"volume\":\"67 8\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microwave and Optical Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mop.70355\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70355","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于频谱监测的新型、极低姿态、小型化的单极天线。该天线实现了前所未有的100:1阻抗带宽(30-3000 MHz),相当于196%的分数带宽。具有紧凑的尺寸为0.03 λ × 0.03 λ × 0.00015 λ $0.03\ λ \倍0.03\lambda \乘以0.00015\lambda $,其中λ $\lambda $为最低工作频率时的波长。为了解决尺寸、重量和功率(SWaP)的限制,同时将工作扩展到具有挑战性的30-300 MHz频段,天线背面集成了多级集总单元匹配网络。这种双路径匹配网络使Ant. 5 (0.03 λ $0.03\lambda $)能够匹配更大天线(Ant. 4;0.24 λ $0.24\lambda $),有效地克服了尺寸带宽的限制。该天线在800mhz时达到3.6 dBi的峰值增益,并在360至3000mhz期间保持0 dBi以上的增益。测量到的VSWR在30至38 MHz范围内保持在3以下,在剩余的工作频段内保持在2以下。仿真和测量结果显示了良好的一致性,验证了设计对swap受限平台(如移动、机载和密集部署系统)的适用性。该研究为宽带频谱监测和测向阵列提供了一种变革性的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miniaturized Super Wideband VHF/UHF Monopole Antenna With Integrated Matching Network for Spectrum Monitoring Applications

This paper presents a novel, extremely low-profile, miniaturized monopole antenna for spectrum monitoring applications. The antenna achieves an unprecedented 100:1 impedance bandwidth (30–3000 MHz), corresponding to a fractional bandwidth of 196%, with a compact size of 0.03 λ × 0.03 λ × 0.00015 λ $0.03\lambda \times 0.03\lambda \times 0.00015\lambda $ , where λ $\lambda $ is the wavelength at the lowest operating frequency. To address size, weight, and power (SWaP) constraints while extending operation into the challenging 30–300 MHz band, a multi-stage lumped-element matching network is integrated on the antenna's back side. This dual-path matching network enables Ant. 5 ( 0.03 λ $0.03\lambda $ ) to match the low-frequency performance of a much larger antenna (Ant. 4, 0.24 λ $0.24\lambda $ ), effectively overcoming the size-bandwidth limitation. The antenna achieves a peak gain of 3.6 dBi at 800 MHz and maintains gain above 0 dBi from 360 to 3000 MHz. Measured VSWR remains below 3 from 30 to 38 MHz and below 2 across the remaining of the operational band. Simulated and measured results show excellent agreement, validating the design's suitability for SWaP-constrained platforms such as mobile, airborne, and densely deployed systems. This study offers a transformative solution for broadband spectrum monitoring and direction-finding arrays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信