在不去除细胞壁的情况下电穿孔介导的叶红藻基因传递

IF 2.8 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hikari Izumi, Toshiki Uji, Kojiro Matsumoto, Kaz Nagaosa, Satoru Fukuda
{"title":"在不去除细胞壁的情况下电穿孔介导的叶红藻基因传递","authors":"Hikari Izumi,&nbsp;Toshiki Uji,&nbsp;Kojiro Matsumoto,&nbsp;Kaz Nagaosa,&nbsp;Satoru Fukuda","doi":"10.1007/s10126-025-10506-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to assess the potential of a gene delivery technique in the red macroalga <i>Pyropia yezoensis</i> (Rhodophyta) using electroporation without removing the cell wall. An antibiotic resistance gene was introduced into <i>P. yezoensis</i> tissues containing cells with intact cell walls through electroporation, followed by selection with the corresponding antibiotic. No germlings survived in the non-electroporated control tissue fragments under antibiotic selection. In contrast, some germlings were observed to survive in the electroporated group. Furthermore, the presence of antibiotic resistance genes was confirmed in the genomic DNA of several antibiotic-resistant germlings. Although reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP) were also introduced as supplementary markers, their expression was not detectable under the tested conditions. These findings provide evidence supporting the successful introduction of antibiotic resistance genes into <i>P. yezoensis</i> cells via electroporation. This study offers a preliminary assessment of a gene delivery strategy in <i>P. yezoensis</i> that bypasses cell wall removal, presenting a straightforward method for introducing foreign genes into <i>Pyropia</i>. To the best of our knowledge, this is the first report to demonstrate successful gene transfer via electroporation in a macroalga without cell wall removal. These results provide valuable insights for the development of genetic transformation systems in red macroalgae.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroporation-Mediated Gene Delivery in Pyropia yezoensis (Rhodophyta) Without Cell Wall Removal\",\"authors\":\"Hikari Izumi,&nbsp;Toshiki Uji,&nbsp;Kojiro Matsumoto,&nbsp;Kaz Nagaosa,&nbsp;Satoru Fukuda\",\"doi\":\"10.1007/s10126-025-10506-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aimed to assess the potential of a gene delivery technique in the red macroalga <i>Pyropia yezoensis</i> (Rhodophyta) using electroporation without removing the cell wall. An antibiotic resistance gene was introduced into <i>P. yezoensis</i> tissues containing cells with intact cell walls through electroporation, followed by selection with the corresponding antibiotic. No germlings survived in the non-electroporated control tissue fragments under antibiotic selection. In contrast, some germlings were observed to survive in the electroporated group. Furthermore, the presence of antibiotic resistance genes was confirmed in the genomic DNA of several antibiotic-resistant germlings. Although reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP) were also introduced as supplementary markers, their expression was not detectable under the tested conditions. These findings provide evidence supporting the successful introduction of antibiotic resistance genes into <i>P. yezoensis</i> cells via electroporation. This study offers a preliminary assessment of a gene delivery strategy in <i>P. yezoensis</i> that bypasses cell wall removal, presenting a straightforward method for introducing foreign genes into <i>Pyropia</i>. To the best of our knowledge, this is the first report to demonstrate successful gene transfer via electroporation in a macroalga without cell wall removal. These results provide valuable insights for the development of genetic transformation systems in red macroalgae.</p></div>\",\"PeriodicalId\":690,\"journal\":{\"name\":\"Marine Biotechnology\",\"volume\":\"27 5\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10126-025-10506-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-025-10506-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估一种不去除细胞壁的电穿孔技术在红藻叶红藻(Rhodophyta)中基因传递技术的潜力。采用电穿孔法将一种耐药基因导入含有细胞壁完整细胞的紫杉树组织中,并与相应的抗生素进行选择。在抗生素选择下,未电穿孔的对照组织片段中没有胚芽存活。相比之下,电穿孔组观察到一些胚芽存活。此外,在一些耐药种子的基因组DNA中证实了抗生素耐药基因的存在。虽然还引入了β-葡萄糖醛酸酶(GUS)和绿色荧光蛋白(GFP)等报告基因作为补充标记,但在测试条件下无法检测到它们的表达。这些发现为通过电穿孔将抗生素耐药基因成功导入叶藻细胞提供了证据。本研究初步评估了一种绕过细胞壁的yezoensis基因传递策略,提出了一种将外源基因引入Pyropia的直接方法。据我们所知,这是第一份通过电穿孔在没有细胞壁去除的大型藻类中成功转移基因的报告。这些结果为红藻遗传转化系统的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electroporation-Mediated Gene Delivery in Pyropia yezoensis (Rhodophyta) Without Cell Wall Removal

This study aimed to assess the potential of a gene delivery technique in the red macroalga Pyropia yezoensis (Rhodophyta) using electroporation without removing the cell wall. An antibiotic resistance gene was introduced into P. yezoensis tissues containing cells with intact cell walls through electroporation, followed by selection with the corresponding antibiotic. No germlings survived in the non-electroporated control tissue fragments under antibiotic selection. In contrast, some germlings were observed to survive in the electroporated group. Furthermore, the presence of antibiotic resistance genes was confirmed in the genomic DNA of several antibiotic-resistant germlings. Although reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP) were also introduced as supplementary markers, their expression was not detectable under the tested conditions. These findings provide evidence supporting the successful introduction of antibiotic resistance genes into P. yezoensis cells via electroporation. This study offers a preliminary assessment of a gene delivery strategy in P. yezoensis that bypasses cell wall removal, presenting a straightforward method for introducing foreign genes into Pyropia. To the best of our knowledge, this is the first report to demonstrate successful gene transfer via electroporation in a macroalga without cell wall removal. These results provide valuable insights for the development of genetic transformation systems in red macroalgae.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信