低硫噻吩ofet的操作中表征:在纳米尺度上控制结构-性能关系

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Souren Grigorian, Anton Davydok, Linda Grodd, Yuriy Luponosov, Sergey Ponomarenko, Ilaria Fratoddi
{"title":"低硫噻吩ofet的操作中表征:在纳米尺度上控制结构-性能关系","authors":"Souren Grigorian,&nbsp;Anton Davydok,&nbsp;Linda Grodd,&nbsp;Yuriy Luponosov,&nbsp;Sergey Ponomarenko,&nbsp;Ilaria Fratoddi","doi":"10.1186/s11671-025-04332-5","DOIUrl":null,"url":null,"abstract":"<div><p>Grazing Incident Wide Angle X-ray Scattering (GIWAXS) studies on organic field-effect transistors (OFETs) fabricated with an aliphatic functionalized α,α'-quinquethiophene (i.e. 5,5′′′′-dihexyl-2,2′:5′,2′′:5′′,2′′′:5′′′,2′′′′-quinquethiophene, DH5T) thin film, were carried out. The structure-property relationships of the semiconductor material were investigated. A detailed, spatially resolved microstructural characterization of the active layer was carried out with the aim of understanding the role of the film’s microstructure on electrical performance. For this purpose, a custom-made setup designed for <i>in-operando</i> tests of OFETs was used, allowing a correlation under measured conditions of the complex microstructure with the thin film electrical behavior, under operating conditions. The GIWAXS measurements revealed a significant anisotropy of the DH5T thin films, under source-drain applied voltages (V<sub>sd</sub>). Particularly notable variations were observed for both in-plane and out-of-plane directions. Upon applying the V<sub>sd</sub>, the microstructure remained relatively stable in the out-of-plane (001) direction, suggesting that this orientation is less affected by the applied voltages. However, in the in-plane (020) direction, an increase of the π–π stacking of the DH5T molecules was found, indicating a stronger response of the microstructure to the applied voltage. Notably, a higher tensile strain, exceeding 1%, was observed at a V<sub>sd</sub> of − 10 V, suggesting that the application of voltage induces significant structural reorganization in the thin film, which may have implications for optimizing the performance of OFETs in practical applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04332-5.pdf","citationCount":"0","resultStr":"{\"title\":\"In-operando characterizations of oligothiophene OFETs: controlling the structure-property relationships at the nanoscale\",\"authors\":\"Souren Grigorian,&nbsp;Anton Davydok,&nbsp;Linda Grodd,&nbsp;Yuriy Luponosov,&nbsp;Sergey Ponomarenko,&nbsp;Ilaria Fratoddi\",\"doi\":\"10.1186/s11671-025-04332-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Grazing Incident Wide Angle X-ray Scattering (GIWAXS) studies on organic field-effect transistors (OFETs) fabricated with an aliphatic functionalized α,α'-quinquethiophene (i.e. 5,5′′′′-dihexyl-2,2′:5′,2′′:5′′,2′′′:5′′′,2′′′′-quinquethiophene, DH5T) thin film, were carried out. The structure-property relationships of the semiconductor material were investigated. A detailed, spatially resolved microstructural characterization of the active layer was carried out with the aim of understanding the role of the film’s microstructure on electrical performance. For this purpose, a custom-made setup designed for <i>in-operando</i> tests of OFETs was used, allowing a correlation under measured conditions of the complex microstructure with the thin film electrical behavior, under operating conditions. The GIWAXS measurements revealed a significant anisotropy of the DH5T thin films, under source-drain applied voltages (V<sub>sd</sub>). Particularly notable variations were observed for both in-plane and out-of-plane directions. Upon applying the V<sub>sd</sub>, the microstructure remained relatively stable in the out-of-plane (001) direction, suggesting that this orientation is less affected by the applied voltages. However, in the in-plane (020) direction, an increase of the π–π stacking of the DH5T molecules was found, indicating a stronger response of the microstructure to the applied voltage. Notably, a higher tensile strain, exceeding 1%, was observed at a V<sub>sd</sub> of − 10 V, suggesting that the application of voltage induces significant structural reorganization in the thin film, which may have implications for optimizing the performance of OFETs in practical applications.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04332-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04332-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04332-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对脂肪族功能化α,α′-五倍埃塞俄比亚烯(即5,5””-二己基2,2”:5”,2”:5”,2”:5”,2””-五倍埃塞俄比亚烯,DH5T)薄膜制备的有机场效应晶体管(ofet)进行了掠入射广角x射线散射(GIWAXS)研究。研究了半导体材料的结构-性能关系。为了了解薄膜的微观结构对电性能的影响,对活性层进行了详细的、空间分辨的微观结构表征。为此,使用了专为ofet的工作中测试而设计的定制装置,允许在测量条件下将复杂微观结构与薄膜在工作条件下的电学行为相关联。GIWAXS测量显示,在源极-漏极外加电压(Vsd)下,DH5T薄膜具有显著的各向异性。在面内和面外方向上观察到特别显著的变化。施加Vsd后,微观结构在面外(001)方向保持相对稳定,表明该方向受施加电压的影响较小。然而,在平面内(020)方向,DH5T分子的π -π堆积增加,表明微观结构对外加电压的响应更强。值得注意的是,在Vsd为- 10 V时,观察到一个超过1%的高拉伸应变,这表明电压的施加在薄膜中诱导了显著的结构重组,这可能对优化ofet在实际应用中的性能具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-operando characterizations of oligothiophene OFETs: controlling the structure-property relationships at the nanoscale

Grazing Incident Wide Angle X-ray Scattering (GIWAXS) studies on organic field-effect transistors (OFETs) fabricated with an aliphatic functionalized α,α'-quinquethiophene (i.e. 5,5′′′′-dihexyl-2,2′:5′,2′′:5′′,2′′′:5′′′,2′′′′-quinquethiophene, DH5T) thin film, were carried out. The structure-property relationships of the semiconductor material were investigated. A detailed, spatially resolved microstructural characterization of the active layer was carried out with the aim of understanding the role of the film’s microstructure on electrical performance. For this purpose, a custom-made setup designed for in-operando tests of OFETs was used, allowing a correlation under measured conditions of the complex microstructure with the thin film electrical behavior, under operating conditions. The GIWAXS measurements revealed a significant anisotropy of the DH5T thin films, under source-drain applied voltages (Vsd). Particularly notable variations were observed for both in-plane and out-of-plane directions. Upon applying the Vsd, the microstructure remained relatively stable in the out-of-plane (001) direction, suggesting that this orientation is less affected by the applied voltages. However, in the in-plane (020) direction, an increase of the π–π stacking of the DH5T molecules was found, indicating a stronger response of the microstructure to the applied voltage. Notably, a higher tensile strain, exceeding 1%, was observed at a Vsd of − 10 V, suggesting that the application of voltage induces significant structural reorganization in the thin film, which may have implications for optimizing the performance of OFETs in practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信