{"title":"不同堆叠方式的二维ZnO双分子层的可调谐电子结构","authors":"Hongduo Hu , Zhihua Xiong , Juanli Zhao , Lanli Chen","doi":"10.1016/j.susc.2025.122833","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional ZnO materials have recently attracted widespread research attention for their promising properties, chemical stability, and mechanical strength. These special properties make them not only imply a scientific interest but also indicate great technological applications in optoelectronics, photonics, and sensors. Herein, based on the first-principles calculations with the HSE06 potential, the atomic structures and electronic properties of ZnO bilayer with different stacking are investigated. The results demonstrate that AB-stacking is the most energetically favorable configuration among all those considered. The AB-stacking is mechanically and dynamically stable. The calculated band gap is 2.88 eV using the HSE06 potential and 1.45 eV using the PBE potential. Moreover, we found that it is possible to modulate the energy bandgap both by the type of bilayer stacking and by the effect of the biaxial strain and interfacial distance. The ability to tune the energy bandgap in ZnO bilayers by adjusting their geometric configuration or applying an external strain or changing the interfacial distance could inspire new applications in various technological fields.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"762 ","pages":"Article 122833"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable electronic structures of two-dimensional ZnO bilayers with different stacking\",\"authors\":\"Hongduo Hu , Zhihua Xiong , Juanli Zhao , Lanli Chen\",\"doi\":\"10.1016/j.susc.2025.122833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional ZnO materials have recently attracted widespread research attention for their promising properties, chemical stability, and mechanical strength. These special properties make them not only imply a scientific interest but also indicate great technological applications in optoelectronics, photonics, and sensors. Herein, based on the first-principles calculations with the HSE06 potential, the atomic structures and electronic properties of ZnO bilayer with different stacking are investigated. The results demonstrate that AB-stacking is the most energetically favorable configuration among all those considered. The AB-stacking is mechanically and dynamically stable. The calculated band gap is 2.88 eV using the HSE06 potential and 1.45 eV using the PBE potential. Moreover, we found that it is possible to modulate the energy bandgap both by the type of bilayer stacking and by the effect of the biaxial strain and interfacial distance. The ability to tune the energy bandgap in ZnO bilayers by adjusting their geometric configuration or applying an external strain or changing the interfacial distance could inspire new applications in various technological fields.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"762 \",\"pages\":\"Article 122833\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602825001402\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001402","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tunable electronic structures of two-dimensional ZnO bilayers with different stacking
Two-dimensional ZnO materials have recently attracted widespread research attention for their promising properties, chemical stability, and mechanical strength. These special properties make them not only imply a scientific interest but also indicate great technological applications in optoelectronics, photonics, and sensors. Herein, based on the first-principles calculations with the HSE06 potential, the atomic structures and electronic properties of ZnO bilayer with different stacking are investigated. The results demonstrate that AB-stacking is the most energetically favorable configuration among all those considered. The AB-stacking is mechanically and dynamically stable. The calculated band gap is 2.88 eV using the HSE06 potential and 1.45 eV using the PBE potential. Moreover, we found that it is possible to modulate the energy bandgap both by the type of bilayer stacking and by the effect of the biaxial strain and interfacial distance. The ability to tune the energy bandgap in ZnO bilayers by adjusting their geometric configuration or applying an external strain or changing the interfacial distance could inspire new applications in various technological fields.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.