具有单分量水平耗散的二维Navier-Stokes方程的全局适定性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaochuan Guo, Hongxia Lin, Ruiqi You, Wenjie Yao
{"title":"具有单分量水平耗散的二维Navier-Stokes方程的全局适定性","authors":"Xiaochuan Guo,&nbsp;Hongxia Lin,&nbsp;Ruiqi You,&nbsp;Wenjie Yao","doi":"10.1016/j.aml.2025.109719","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns a special anisotropic Navier–Stokes equations on periodic boxes. The system only has horizontal dissipation in the horizontal component equation. Based on special properties of the periodic domain and decomposition techniques, we prove the global well-posedness and stability of the symmetric solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Furthermore, exponential decay rates are obtained for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the oscillation <span><math><msubsup><mrow><mover><mrow><mi>u</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup></math></span> in horizontal periodic. Our work extends the stability result in Dong et al. (2021) to weaker dissipation.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"172 ","pages":"Article 109719"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness for 2D Navier–Stokes equations with horizontal dissipation in only one component\",\"authors\":\"Xiaochuan Guo,&nbsp;Hongxia Lin,&nbsp;Ruiqi You,&nbsp;Wenjie Yao\",\"doi\":\"10.1016/j.aml.2025.109719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns a special anisotropic Navier–Stokes equations on periodic boxes. The system only has horizontal dissipation in the horizontal component equation. Based on special properties of the periodic domain and decomposition techniques, we prove the global well-posedness and stability of the symmetric solution in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Furthermore, exponential decay rates are obtained for <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and the oscillation <span><math><msubsup><mrow><mover><mrow><mi>u</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>1</mn></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></msubsup></math></span> in horizontal periodic. Our work extends the stability result in Dong et al. (2021) to weaker dissipation.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"172 \",\"pages\":\"Article 109719\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925002691\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925002691","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究周期方框上一类特殊的各向异性Navier-Stokes方程。在水平分量方程中,系统只有水平耗散。利用周期域的特殊性质和分解技术,证明了H2中对称解的全局适定性和稳定性。在水平周期中,得到了u2和振荡u ~ 1(1)的指数衰减率。我们的工作将Dong et al.(2021)的稳定性结果扩展到更弱的耗散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness for 2D Navier–Stokes equations with horizontal dissipation in only one component
This paper concerns a special anisotropic Navier–Stokes equations on periodic boxes. The system only has horizontal dissipation in the horizontal component equation. Based on special properties of the periodic domain and decomposition techniques, we prove the global well-posedness and stability of the symmetric solution in H2. Furthermore, exponential decay rates are obtained for u2 and the oscillation u˜1(1) in horizontal periodic. Our work extends the stability result in Dong et al. (2021) to weaker dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信