ROSIE:人工智能生成组织病理学图像的多重免疫荧光染色

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Eric Wu, Matthew Bieniosek, Zhenqin Wu, Nitya Thakkar, Gregory W. Charville, Ahmad Makky, Christian M. Schürch, Jeroen R. Huyghe, Ulrike Peters, Christopher I. Li, Li Li, Hannah Giba, Vivek Behera, Arjun Raman, Alexandro E. Trevino, Aaron T. Mayer, James Zou
{"title":"ROSIE:人工智能生成组织病理学图像的多重免疫荧光染色","authors":"Eric Wu, Matthew Bieniosek, Zhenqin Wu, Nitya Thakkar, Gregory W. Charville, Ahmad Makky, Christian M. Schürch, Jeroen R. Huyghe, Ulrike Peters, Christopher I. Li, Li Li, Hannah Giba, Vivek Behera, Arjun Raman, Alexandro E. Trevino, Aaron T. Mayer, James Zou","doi":"10.1038/s41467-025-62346-0","DOIUrl":null,"url":null,"abstract":"<p>Hematoxylin and eosin (H&amp;E) is a common and inexpensive histopathology assay. Though widely used and information-rich, it cannot directly inform about specific molecular markers, which require additional experiments to assess. To address this gap, we present ROSIE, a deep-learning framework that computationally imputes the expression and localization of dozens of proteins from H&amp;E images. Our model is trained on a dataset of over 1300 paired and aligned H&amp;E and multiplex immunofluorescence (mIF) samples from over a dozen tissues and disease conditions, spanning over 16 million cells. Validation of our in silico <i>mIF</i> staining method on held-out H&amp;E samples demonstrates that the predicted biomarkers are effective in identifying cell phenotypes, particularly distinguishing lymphocytes such as B cells and T cells, which are not readily discernible with H&amp;E staining alone. Additionally, ROSIE facilitates the robust identification of stromal and epithelial microenvironments and immune cell subtypes like tumor-infiltrating lymphocytes (TILs), which are important for understanding tumor-immune interactions and can help inform treatment strategies in cancer research.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"176 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROSIE: AI generation of multiplex immunofluorescence staining from histopathology images\",\"authors\":\"Eric Wu, Matthew Bieniosek, Zhenqin Wu, Nitya Thakkar, Gregory W. Charville, Ahmad Makky, Christian M. Schürch, Jeroen R. Huyghe, Ulrike Peters, Christopher I. Li, Li Li, Hannah Giba, Vivek Behera, Arjun Raman, Alexandro E. Trevino, Aaron T. Mayer, James Zou\",\"doi\":\"10.1038/s41467-025-62346-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hematoxylin and eosin (H&amp;E) is a common and inexpensive histopathology assay. Though widely used and information-rich, it cannot directly inform about specific molecular markers, which require additional experiments to assess. To address this gap, we present ROSIE, a deep-learning framework that computationally imputes the expression and localization of dozens of proteins from H&amp;E images. Our model is trained on a dataset of over 1300 paired and aligned H&amp;E and multiplex immunofluorescence (mIF) samples from over a dozen tissues and disease conditions, spanning over 16 million cells. Validation of our in silico <i>mIF</i> staining method on held-out H&amp;E samples demonstrates that the predicted biomarkers are effective in identifying cell phenotypes, particularly distinguishing lymphocytes such as B cells and T cells, which are not readily discernible with H&amp;E staining alone. Additionally, ROSIE facilitates the robust identification of stromal and epithelial microenvironments and immune cell subtypes like tumor-infiltrating lymphocytes (TILs), which are important for understanding tumor-immune interactions and can help inform treatment strategies in cancer research.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"176 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-62346-0\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62346-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

苏木精和伊红(H&;E)是一种常见且廉价的组织病理学检测方法。虽然它被广泛使用并且信息丰富,但它不能直接告知特定的分子标记,这需要额外的实验来评估。为了解决这一差距,我们提出了ROSIE,这是一个深度学习框架,可以从H&;E图像中计算出数十种蛋白质的表达和定位。我们的模型是在超过1300个配对和排列的H&;E和多重免疫荧光(mIF)样本的数据集上训练的,这些样本来自十多种组织和疾病状况,跨越超过1600万个细胞。我们在H&;E样品上的硅片mIF染色方法的验证表明,预测的生物标记物在识别细胞表型方面是有效的,特别是区分淋巴细胞,如B细胞和T细胞,这是单独H&;E染色不易识别的。此外,ROSIE促进了基质和上皮微环境以及免疫细胞亚型(如肿瘤浸润淋巴细胞(til))的强大识别,这对于理解肿瘤-免疫相互作用非常重要,并有助于为癌症研究中的治疗策略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ROSIE: AI generation of multiplex immunofluorescence staining from histopathology images

ROSIE: AI generation of multiplex immunofluorescence staining from histopathology images

Hematoxylin and eosin (H&E) is a common and inexpensive histopathology assay. Though widely used and information-rich, it cannot directly inform about specific molecular markers, which require additional experiments to assess. To address this gap, we present ROSIE, a deep-learning framework that computationally imputes the expression and localization of dozens of proteins from H&E images. Our model is trained on a dataset of over 1300 paired and aligned H&E and multiplex immunofluorescence (mIF) samples from over a dozen tissues and disease conditions, spanning over 16 million cells. Validation of our in silico mIF staining method on held-out H&E samples demonstrates that the predicted biomarkers are effective in identifying cell phenotypes, particularly distinguishing lymphocytes such as B cells and T cells, which are not readily discernible with H&E staining alone. Additionally, ROSIE facilitates the robust identification of stromal and epithelial microenvironments and immune cell subtypes like tumor-infiltrating lymphocytes (TILs), which are important for understanding tumor-immune interactions and can help inform treatment strategies in cancer research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信