底部定向沉积钙钛矿异质结高效稳定的铅卤化物钙钛矿/硅串联太阳能电池

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shengjie Du, Feng Ye, Yutao Wang, Shuangbiao Xia, Guoyi Chen, Zhiqiu Yu, Kailian Dong, Zixi Yu, Yangyang Guo, Kexin Ming, Yansong Ge, Qinxian Lin, Kun Dai, Jiwei Liang, Zhenhua Yu, Weijun Ke, Liping Zhang and Guojia Fang
{"title":"底部定向沉积钙钛矿异质结高效稳定的铅卤化物钙钛矿/硅串联太阳能电池","authors":"Shengjie Du, Feng Ye, Yutao Wang, Shuangbiao Xia, Guoyi Chen, Zhiqiu Yu, Kailian Dong, Zixi Yu, Yangyang Guo, Kexin Ming, Yansong Ge, Qinxian Lin, Kun Dai, Jiwei Liang, Zhenhua Yu, Weijun Ke, Liping Zhang and Guojia Fang","doi":"10.1039/D5EE03475B","DOIUrl":null,"url":null,"abstract":"<p >Perovskite/silicon (PSC/Si) tandem solar cells are promising for high-efficiency photovoltaics, yet wide-bandgap (WBG) perovskites face challenges including poor charge transport, phase segregation, and poor conformality on textured silicon. Here, we engineered directional deposition 2D perovskite assemblies at the perovskite bottom interface to establish heterojunctions, enhancing charge transport, improving band alignment, and boosting operational stability by introducing 3,3-difluoropyrrolidinium hydrochloride (DFPHCl) and guanidinium thiocyanate (GASCN) into the WBG perovskite precursor. Leveraging the strong binding affinity of DFPHCl within the precursor solution for indium tin oxide (ITO), we converted excess lead iodide (PbI<small><sub>2</sub></small>) into directional deposition 2D perovskite (DFP)<small><sub>2</sub></small>PbI<small><sub><em>x</em></sub></small>Cl<small><sub>4−<em>x</em></sub></small>, which accumulates at bottom grain boundaries and can compromise stability. The process facilitated by GASCN as a crystallization promoter concurrently enhanced (100)-oriented crystal growth and further optimized the band alignment. The resultant 1.67 eV perovskite solar cell achieves a high open-circuit voltage (<em>V</em><small><sub>OC</sub></small>) of 1.284 V and a power conversion efficiency (PCE) of 23.29%, maintaining 90% of its initial performance after 983 hours of continuous illumination. The optimized tandem device delivers a <em>V</em><small><sub>OC</sub></small> of 1.913 V and a stabilized PCE of 31.37%, establishing a good pathway toward efficient and stable tandem photovoltaic devices.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 19","pages":" 8827-8837"},"PeriodicalIF":30.8000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bottom directional deposition perovskite heterojunctions for efficient and stable lead halide perovskite/silicon tandem solar cells\",\"authors\":\"Shengjie Du, Feng Ye, Yutao Wang, Shuangbiao Xia, Guoyi Chen, Zhiqiu Yu, Kailian Dong, Zixi Yu, Yangyang Guo, Kexin Ming, Yansong Ge, Qinxian Lin, Kun Dai, Jiwei Liang, Zhenhua Yu, Weijun Ke, Liping Zhang and Guojia Fang\",\"doi\":\"10.1039/D5EE03475B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Perovskite/silicon (PSC/Si) tandem solar cells are promising for high-efficiency photovoltaics, yet wide-bandgap (WBG) perovskites face challenges including poor charge transport, phase segregation, and poor conformality on textured silicon. Here, we engineered directional deposition 2D perovskite assemblies at the perovskite bottom interface to establish heterojunctions, enhancing charge transport, improving band alignment, and boosting operational stability by introducing 3,3-difluoropyrrolidinium hydrochloride (DFPHCl) and guanidinium thiocyanate (GASCN) into the WBG perovskite precursor. Leveraging the strong binding affinity of DFPHCl within the precursor solution for indium tin oxide (ITO), we converted excess lead iodide (PbI<small><sub>2</sub></small>) into directional deposition 2D perovskite (DFP)<small><sub>2</sub></small>PbI<small><sub><em>x</em></sub></small>Cl<small><sub>4−<em>x</em></sub></small>, which accumulates at bottom grain boundaries and can compromise stability. The process facilitated by GASCN as a crystallization promoter concurrently enhanced (100)-oriented crystal growth and further optimized the band alignment. The resultant 1.67 eV perovskite solar cell achieves a high open-circuit voltage (<em>V</em><small><sub>OC</sub></small>) of 1.284 V and a power conversion efficiency (PCE) of 23.29%, maintaining 90% of its initial performance after 983 hours of continuous illumination. The optimized tandem device delivers a <em>V</em><small><sub>OC</sub></small> of 1.913 V and a stabilized PCE of 31.37%, establishing a good pathway toward efficient and stable tandem photovoltaic devices.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 19\",\"pages\":\" 8827-8837\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee03475b\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee03475b","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿/硅(PSC/Si)串联太阳能电池是一种很有前途的高效光伏电池,但宽禁带(WBG)钙钛矿面临的挑战包括电荷输运差、相偏析和在织构硅上的一致性差。本研究通过在WBG钙钛矿前驱体中引入3,3-二氟吡啶盐酸盐(DFPHCl)和硫氰酸胍(GASCN),在钙钛矿底部界面设计定向沉积1D钙钛矿组件,以建立异质结,增强电荷传输,改善条带排列,提高操作稳定性。利用DFPHCl在前驱体溶液中对氧化铟锡(ITO)的强结合亲和力,我们将过量的碘化铅(PbI2)转化为定向沉积的1D钙钛矿(DFP)2PbIxCl4-x,这些钙钛矿在底部晶界积累,可能会损害稳定性。GASCN作为结晶促进剂促进了这一过程,同时增强了(100)取向晶体的生长,并进一步优化了能带排列。得到的1.67 eV钙钛矿太阳能电池具有1.284 V的高开路电压(VOC)和23.29%的功率转换效率(PCE),在连续照射983小时后仍保持其初始性能的90%。优化后的串联器件VOC为1.913 V, PCE稳定值为31.37%,为高效稳定的串联光伏发电奠定了良好的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bottom directional deposition perovskite heterojunctions for efficient and stable lead halide perovskite/silicon tandem solar cells

Bottom directional deposition perovskite heterojunctions for efficient and stable lead halide perovskite/silicon tandem solar cells

Perovskite/silicon (PSC/Si) tandem solar cells are promising for high-efficiency photovoltaics, yet wide-bandgap (WBG) perovskites face challenges including poor charge transport, phase segregation, and poor conformality on textured silicon. Here, we engineered directional deposition 2D perovskite assemblies at the perovskite bottom interface to establish heterojunctions, enhancing charge transport, improving band alignment, and boosting operational stability by introducing 3,3-difluoropyrrolidinium hydrochloride (DFPHCl) and guanidinium thiocyanate (GASCN) into the WBG perovskite precursor. Leveraging the strong binding affinity of DFPHCl within the precursor solution for indium tin oxide (ITO), we converted excess lead iodide (PbI2) into directional deposition 2D perovskite (DFP)2PbIxCl4−x, which accumulates at bottom grain boundaries and can compromise stability. The process facilitated by GASCN as a crystallization promoter concurrently enhanced (100)-oriented crystal growth and further optimized the band alignment. The resultant 1.67 eV perovskite solar cell achieves a high open-circuit voltage (VOC) of 1.284 V and a power conversion efficiency (PCE) of 23.29%, maintaining 90% of its initial performance after 983 hours of continuous illumination. The optimized tandem device delivers a VOC of 1.913 V and a stabilized PCE of 31.37%, establishing a good pathway toward efficient and stable tandem photovoltaic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信