在ZrO2粒子上原位生长TaON纳米壳用于光催化水分解。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yao Xu, Haifeng Wang, Yixiao Qiu, Jiaming Zhang, Jifang Zhang, Ke Shi, Xiaowei Tao, Zihao Zhang, Meng Liu, Chao Xu* and Guijun Ma*, 
{"title":"在ZrO2粒子上原位生长TaON纳米壳用于光催化水分解。","authors":"Yao Xu,&nbsp;Haifeng Wang,&nbsp;Yixiao Qiu,&nbsp;Jiaming Zhang,&nbsp;Jifang Zhang,&nbsp;Ke Shi,&nbsp;Xiaowei Tao,&nbsp;Zihao Zhang,&nbsp;Meng Liu,&nbsp;Chao Xu* and Guijun Ma*,&nbsp;","doi":"10.1021/acsami.5c12427","DOIUrl":null,"url":null,"abstract":"<p >Low-dimensional nanostructuring has emerged as a promising approach to enhance the photocatalytic performance of transition metal oxynitrides, a class of widely investigated visible-light-responsive photocatalysts. Despite their potential, the synthesis of nanostructured oxynitride materials remains a great challenge. In this study, we present a novel NH<sub>4</sub>Cl-assisted vacuum nitridation method for <i>in situ</i> growth of an ultrathin TaON layer on particulate ZrO<sub>2</sub>, resulting in the formation of TaON@ZrO<sub>2</sub> core@shell nanostructures. By controlling the Ta metal content in the precursor, the thickness of the TaON shell can be adjusted within the range of 1–3 nm. Comprehensive Raman spectroscopy and EXAFS analyses confirm the successful synthesis of well-defined and phase-pure TaON nanocrystals. Compared to conventional bulk TaON particles, the nanostructured TaON@ZrO<sub>2</sub> exhibits significantly enhanced photocatalytic activity for visible-light-driven water splitting. Surface photovoltage measurements further demonstrate improved charge separation efficiency, which is attributed to the unique nanostructure design. This work not only provides a robust strategy for the controlled synthesis of TaON@ZrO<sub>2</sub> nanoparticles but also underscores the critical role of nanostructuring in optimizing the water splitting performance of oxynitride-based photocatalysts.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 34","pages":"48407–48416"},"PeriodicalIF":8.2000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-Site Growth of a TaON Nanoshell on ZrO2 Particles for Photocatalytic Water Splitting\",\"authors\":\"Yao Xu,&nbsp;Haifeng Wang,&nbsp;Yixiao Qiu,&nbsp;Jiaming Zhang,&nbsp;Jifang Zhang,&nbsp;Ke Shi,&nbsp;Xiaowei Tao,&nbsp;Zihao Zhang,&nbsp;Meng Liu,&nbsp;Chao Xu* and Guijun Ma*,&nbsp;\",\"doi\":\"10.1021/acsami.5c12427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Low-dimensional nanostructuring has emerged as a promising approach to enhance the photocatalytic performance of transition metal oxynitrides, a class of widely investigated visible-light-responsive photocatalysts. Despite their potential, the synthesis of nanostructured oxynitride materials remains a great challenge. In this study, we present a novel NH<sub>4</sub>Cl-assisted vacuum nitridation method for <i>in situ</i> growth of an ultrathin TaON layer on particulate ZrO<sub>2</sub>, resulting in the formation of TaON@ZrO<sub>2</sub> core@shell nanostructures. By controlling the Ta metal content in the precursor, the thickness of the TaON shell can be adjusted within the range of 1–3 nm. Comprehensive Raman spectroscopy and EXAFS analyses confirm the successful synthesis of well-defined and phase-pure TaON nanocrystals. Compared to conventional bulk TaON particles, the nanostructured TaON@ZrO<sub>2</sub> exhibits significantly enhanced photocatalytic activity for visible-light-driven water splitting. Surface photovoltage measurements further demonstrate improved charge separation efficiency, which is attributed to the unique nanostructure design. This work not only provides a robust strategy for the controlled synthesis of TaON@ZrO<sub>2</sub> nanoparticles but also underscores the critical role of nanostructuring in optimizing the water splitting performance of oxynitride-based photocatalysts.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 34\",\"pages\":\"48407–48416\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c12427\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c12427","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为一类广泛研究的可见光响应型光催化剂,低维纳米结构已成为提高过渡金属氮氧化物光催化性能的一种有前途的方法。尽管具有潜力,纳米结构氮化氧材料的合成仍然是一个巨大的挑战。在这项研究中,我们提出了一种新的nh4cl辅助真空氮化方法,用于在颗粒ZrO2上原位生长超薄TaON层,从而形成TaON@ZrO2 core@shell纳米结构。通过控制前驱体中Ta金属的含量,可以在1 ~ 3 nm范围内调节TaON壳体的厚度。综合拉曼光谱和EXAFS分析证实成功合成了定义良好且相纯的TaON纳米晶体。与传统的大块TaON粒子相比,纳米结构的TaON@ZrO2在可见光驱动的水分解中表现出显著增强的光催化活性。表面光电压测量进一步证明了电荷分离效率的提高,这归功于独特的纳米结构设计。这项工作不仅为TaON@ZrO2纳米颗粒的受控合成提供了强有力的策略,而且强调了纳米结构在优化氮氧基光催化剂的水裂解性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On-Site Growth of a TaON Nanoshell on ZrO2 Particles for Photocatalytic Water Splitting

On-Site Growth of a TaON Nanoshell on ZrO2 Particles for Photocatalytic Water Splitting

Low-dimensional nanostructuring has emerged as a promising approach to enhance the photocatalytic performance of transition metal oxynitrides, a class of widely investigated visible-light-responsive photocatalysts. Despite their potential, the synthesis of nanostructured oxynitride materials remains a great challenge. In this study, we present a novel NH4Cl-assisted vacuum nitridation method for in situ growth of an ultrathin TaON layer on particulate ZrO2, resulting in the formation of TaON@ZrO2 core@shell nanostructures. By controlling the Ta metal content in the precursor, the thickness of the TaON shell can be adjusted within the range of 1–3 nm. Comprehensive Raman spectroscopy and EXAFS analyses confirm the successful synthesis of well-defined and phase-pure TaON nanocrystals. Compared to conventional bulk TaON particles, the nanostructured TaON@ZrO2 exhibits significantly enhanced photocatalytic activity for visible-light-driven water splitting. Surface photovoltage measurements further demonstrate improved charge separation efficiency, which is attributed to the unique nanostructure design. This work not only provides a robust strategy for the controlled synthesis of TaON@ZrO2 nanoparticles but also underscores the critical role of nanostructuring in optimizing the water splitting performance of oxynitride-based photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信