双金属mof形成铜钴接力催化高效还原硝酸盐制氨的原位重建。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-08-15 DOI:10.1002/smll.202506256
Ao Yan, Yingzhe Feng, Xiao Zhang, Jingyuan Sun, Jiajia Wei, Chenqi Shi, Lin Xia, Shiqiang Wang, Hepeng Zhang, Ying Guo
{"title":"双金属mof形成铜钴接力催化高效还原硝酸盐制氨的原位重建。","authors":"Ao Yan,&nbsp;Yingzhe Feng,&nbsp;Xiao Zhang,&nbsp;Jingyuan Sun,&nbsp;Jiajia Wei,&nbsp;Chenqi Shi,&nbsp;Lin Xia,&nbsp;Shiqiang Wang,&nbsp;Hepeng Zhang,&nbsp;Ying Guo","doi":"10.1002/smll.202506256","DOIUrl":null,"url":null,"abstract":"<p>The electrochemical nitrate reduction reaction (eNO<sub>3</sub>RR) is hindered by poor selectivity and sluggish kinetics due to competing hydrogen evolution and complex multi-electron/proton transfers. Here, a bimetallic CuCo-MOF (Metal-Organic Framework) is reported catalyst that undergoes in situ electrochemical reconstruction to form copper nanoparticles embedded within a cobalt-MOF matrix, establishing spatially coupled active sites for tandem catalysis. Mechanistic investigations reveal that the in situ-generated Cu nanoparticles selectively catalyze the nitrate-to-nitrite conversion, while the adjacent cobalt sites in the MOF framework facilitate water dissociation to provide reactive hydrogen species (*H) for subsequent nitrite hydrogenation to ammonia. The confined MOF architecture ensures efficient intermediate transfer, effectively preventing nitrite accumulation. This unique relay catalysis mechanism enables the reconstructed CuCo-DHTA catalyst to achieve remarkable NO<sub>3</sub>RR performance, including a Faradaic efficiency exceeding 95% across a wide potential window (−0.8 to −1.0 V vs RHE) and a record-high ammonia production rate of 20.02 mg h<sup>−1</sup> cm<sup>−2</sup>, surpassing state-of-the-art MOF-based catalysts. The pre-catalyst's reconstruction strategy in this work provides a flexible design for high-performance nitrate reduction catalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 39","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Reconstruction of Bimetallic MOFs to Form Copper-Cobalt Relay Catalysis for Efficient Nitrate Reduction to Ammonia\",\"authors\":\"Ao Yan,&nbsp;Yingzhe Feng,&nbsp;Xiao Zhang,&nbsp;Jingyuan Sun,&nbsp;Jiajia Wei,&nbsp;Chenqi Shi,&nbsp;Lin Xia,&nbsp;Shiqiang Wang,&nbsp;Hepeng Zhang,&nbsp;Ying Guo\",\"doi\":\"10.1002/smll.202506256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electrochemical nitrate reduction reaction (eNO<sub>3</sub>RR) is hindered by poor selectivity and sluggish kinetics due to competing hydrogen evolution and complex multi-electron/proton transfers. Here, a bimetallic CuCo-MOF (Metal-Organic Framework) is reported catalyst that undergoes in situ electrochemical reconstruction to form copper nanoparticles embedded within a cobalt-MOF matrix, establishing spatially coupled active sites for tandem catalysis. Mechanistic investigations reveal that the in situ-generated Cu nanoparticles selectively catalyze the nitrate-to-nitrite conversion, while the adjacent cobalt sites in the MOF framework facilitate water dissociation to provide reactive hydrogen species (*H) for subsequent nitrite hydrogenation to ammonia. The confined MOF architecture ensures efficient intermediate transfer, effectively preventing nitrite accumulation. This unique relay catalysis mechanism enables the reconstructed CuCo-DHTA catalyst to achieve remarkable NO<sub>3</sub>RR performance, including a Faradaic efficiency exceeding 95% across a wide potential window (−0.8 to −1.0 V vs RHE) and a record-high ammonia production rate of 20.02 mg h<sup>−1</sup> cm<sup>−2</sup>, surpassing state-of-the-art MOF-based catalysts. The pre-catalyst's reconstruction strategy in this work provides a flexible design for high-performance nitrate reduction catalysts.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 39\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202506256\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202506256","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学硝酸还原反应(eNO3RR)选择性差,动力学迟钝,由于竞争的析氢和复杂的多电子/质子转移。本文报道了一种双金属CuCo-MOF(金属-有机框架)催化剂,该催化剂经过原位电化学重构,形成嵌入钴- mof基体中的铜纳米颗粒,建立空间耦合活性位点进行串联催化。机制研究表明,原位生成的Cu纳米颗粒选择性地催化硝酸盐到亚硝酸盐的转化,而MOF框架中相邻的钴位点促进水解离,为随后的亚硝酸盐加氢生成氨提供活性氢(*H)。封闭的MOF结构确保了高效的中间转移,有效地防止了亚硝酸盐的积累。这种独特的催化机制使重构的CuCo-DHTA催化剂能够实现卓越的NO3RR性能,包括在宽电位窗口(-0.8至-1.0 V vs RHE)内的法拉第效率超过95%,以及创纪录的20.02 mg h-1 cm-2的氨生成率,超过了最先进的mof催化剂。本研究中预催化剂的重构策略为高性能硝酸还原催化剂提供了一种灵活的设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Reconstruction of Bimetallic MOFs to Form Copper-Cobalt Relay Catalysis for Efficient Nitrate Reduction to Ammonia

In Situ Reconstruction of Bimetallic MOFs to Form Copper-Cobalt Relay Catalysis for Efficient Nitrate Reduction to Ammonia

The electrochemical nitrate reduction reaction (eNO3RR) is hindered by poor selectivity and sluggish kinetics due to competing hydrogen evolution and complex multi-electron/proton transfers. Here, a bimetallic CuCo-MOF (Metal-Organic Framework) is reported catalyst that undergoes in situ electrochemical reconstruction to form copper nanoparticles embedded within a cobalt-MOF matrix, establishing spatially coupled active sites for tandem catalysis. Mechanistic investigations reveal that the in situ-generated Cu nanoparticles selectively catalyze the nitrate-to-nitrite conversion, while the adjacent cobalt sites in the MOF framework facilitate water dissociation to provide reactive hydrogen species (*H) for subsequent nitrite hydrogenation to ammonia. The confined MOF architecture ensures efficient intermediate transfer, effectively preventing nitrite accumulation. This unique relay catalysis mechanism enables the reconstructed CuCo-DHTA catalyst to achieve remarkable NO3RR performance, including a Faradaic efficiency exceeding 95% across a wide potential window (−0.8 to −1.0 V vs RHE) and a record-high ammonia production rate of 20.02 mg h−1 cm−2, surpassing state-of-the-art MOF-based catalysts. The pre-catalyst's reconstruction strategy in this work provides a flexible design for high-performance nitrate reduction catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信