Xiaoyu Yang , Miaomiao Jiang , Zongxuan Huang , Hongjian Huang , Hu Zhao , Qinhui Chen , Haiqing Liu
{"title":"自增强聚硫辛酸基坚韧水下组织生物胶粘剂。","authors":"Xiaoyu Yang , Miaomiao Jiang , Zongxuan Huang , Hongjian Huang , Hu Zhao , Qinhui Chen , Haiqing Liu","doi":"10.1016/j.actbio.2025.08.024","DOIUrl":null,"url":null,"abstract":"<div><div>Strong and durable adhesion of bioadhesives on wet/underwater tissues is still challenging because of the hindrance of the hydration layer and swelling of the adhesive. Here a water-induced self-hardening bioadhesive (p(LA-ABO)) composed of poly(lipoic acid) (PolyLA) capped with 4-allyl-1,2-benzenediol (ABO), is prepared through a solvent evaporation-induced self-polymerization method. During underwater curing, the water-induced aggregation of the hydrophobic PolyLA chain of the bioadhesive leads to a soft-to-hard transition, therefore enhancing its cohesion and wet/underwater tissue adhesion. Its tensile strength and adhesion strength on wet porcine skin respectively increased from 57.77 kPa to 93.87 kPa and from 50.48 kPa to 80.59 kPa in 6 h wet adhesion. Moreover, it can still maintain robust adhesion without weakening (∼85.09 kPa) after 6 h of underwater adhesion. Additionally, the adhesive exhibits a very low swelling (∼1.1%) after 12 h of water immersion. It also shows on-demand detachment, good biocompatibility, and biodegradability. By sandwiching a conductive fabric between two bioadhesives, a strain sensor with a high conductivity is created for sensing body motion signals. This integration of water-induced self-hardening wet adhesion with sensing performance may open a new avenue in the design of biosensors for wet/underwater applications.</div></div><div><h3>Statement of significance</h3><div>Bioadhesives have gained growing attention owing to their wide industrial and biomedical applications. However, despite significant efforts, it remains challenging to achieve strong, stable, and durable wet/underwater adhesion in a simple and effective manner due to an interfacial water barrier. To address this issue, we engineer a water-induced self-hardening PolyLA-based bioadhesive with durable and robust wet/underwater adhesion. Furthermore, by integrating this bioadhesive with conductive cotton fabrics, a highly sensitive and rapidly response to body motion signals strain sensor was created, expanding its application range in wet environments. Therefore, this research offers a new methodology for developing wet/underwater biosensors.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"204 ","pages":"Pages 371-385"},"PeriodicalIF":9.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-reinforceable poly(lipoic acid)-based tough underwater tissue bioadhesive\",\"authors\":\"Xiaoyu Yang , Miaomiao Jiang , Zongxuan Huang , Hongjian Huang , Hu Zhao , Qinhui Chen , Haiqing Liu\",\"doi\":\"10.1016/j.actbio.2025.08.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Strong and durable adhesion of bioadhesives on wet/underwater tissues is still challenging because of the hindrance of the hydration layer and swelling of the adhesive. Here a water-induced self-hardening bioadhesive (p(LA-ABO)) composed of poly(lipoic acid) (PolyLA) capped with 4-allyl-1,2-benzenediol (ABO), is prepared through a solvent evaporation-induced self-polymerization method. During underwater curing, the water-induced aggregation of the hydrophobic PolyLA chain of the bioadhesive leads to a soft-to-hard transition, therefore enhancing its cohesion and wet/underwater tissue adhesion. Its tensile strength and adhesion strength on wet porcine skin respectively increased from 57.77 kPa to 93.87 kPa and from 50.48 kPa to 80.59 kPa in 6 h wet adhesion. Moreover, it can still maintain robust adhesion without weakening (∼85.09 kPa) after 6 h of underwater adhesion. Additionally, the adhesive exhibits a very low swelling (∼1.1%) after 12 h of water immersion. It also shows on-demand detachment, good biocompatibility, and biodegradability. By sandwiching a conductive fabric between two bioadhesives, a strain sensor with a high conductivity is created for sensing body motion signals. This integration of water-induced self-hardening wet adhesion with sensing performance may open a new avenue in the design of biosensors for wet/underwater applications.</div></div><div><h3>Statement of significance</h3><div>Bioadhesives have gained growing attention owing to their wide industrial and biomedical applications. However, despite significant efforts, it remains challenging to achieve strong, stable, and durable wet/underwater adhesion in a simple and effective manner due to an interfacial water barrier. To address this issue, we engineer a water-induced self-hardening PolyLA-based bioadhesive with durable and robust wet/underwater adhesion. Furthermore, by integrating this bioadhesive with conductive cotton fabrics, a highly sensitive and rapidly response to body motion signals strain sensor was created, expanding its application range in wet environments. Therefore, this research offers a new methodology for developing wet/underwater biosensors.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"204 \",\"pages\":\"Pages 371-385\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706125006063\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125006063","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Strong and durable adhesion of bioadhesives on wet/underwater tissues is still challenging because of the hindrance of the hydration layer and swelling of the adhesive. Here a water-induced self-hardening bioadhesive (p(LA-ABO)) composed of poly(lipoic acid) (PolyLA) capped with 4-allyl-1,2-benzenediol (ABO), is prepared through a solvent evaporation-induced self-polymerization method. During underwater curing, the water-induced aggregation of the hydrophobic PolyLA chain of the bioadhesive leads to a soft-to-hard transition, therefore enhancing its cohesion and wet/underwater tissue adhesion. Its tensile strength and adhesion strength on wet porcine skin respectively increased from 57.77 kPa to 93.87 kPa and from 50.48 kPa to 80.59 kPa in 6 h wet adhesion. Moreover, it can still maintain robust adhesion without weakening (∼85.09 kPa) after 6 h of underwater adhesion. Additionally, the adhesive exhibits a very low swelling (∼1.1%) after 12 h of water immersion. It also shows on-demand detachment, good biocompatibility, and biodegradability. By sandwiching a conductive fabric between two bioadhesives, a strain sensor with a high conductivity is created for sensing body motion signals. This integration of water-induced self-hardening wet adhesion with sensing performance may open a new avenue in the design of biosensors for wet/underwater applications.
Statement of significance
Bioadhesives have gained growing attention owing to their wide industrial and biomedical applications. However, despite significant efforts, it remains challenging to achieve strong, stable, and durable wet/underwater adhesion in a simple and effective manner due to an interfacial water barrier. To address this issue, we engineer a water-induced self-hardening PolyLA-based bioadhesive with durable and robust wet/underwater adhesion. Furthermore, by integrating this bioadhesive with conductive cotton fabrics, a highly sensitive and rapidly response to body motion signals strain sensor was created, expanding its application range in wet environments. Therefore, this research offers a new methodology for developing wet/underwater biosensors.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.