从上肢轨迹自动估计手部活动水平:一个概率回归框架。

IF 2.4 3区 工程技术 Q3 ENGINEERING, INDUSTRIAL
Ting-Hung Lin, Yu Hen Hu, Robert Radwin
{"title":"从上肢轨迹自动估计手部活动水平:一个概率回归框架。","authors":"Ting-Hung Lin, Yu Hen Hu, Robert Radwin","doi":"10.1080/00140139.2025.2543047","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate measurement of Hand Activity Level (HAL) is crucial for evaluating musculoskeletal injury risk in repetitive hand-intensive work. Manual HAL assessments are often subjective and impractical for large-scale or continuous monitoring. This study presents a probabilistic regression framework that leverages video-based upper-limb pose trajectories to automatically estimate HAL scores while providing associated confidence measures. By enabling ergonomic risk assessment with quantified uncertainty, the proposed method delivers objective and reliable HAL predictions. Experimental results demonstrate strong in-domain performance (Root Mean Square Error [RMSE] = 0.24, Mean Absolute Error [MAE] = 0.17) and robust cross-domain generalisation (RMSE = 0.74, MAE = 0.54), highlighting both the accuracy and transferability of the framework.</p>","PeriodicalId":50503,"journal":{"name":"Ergonomics","volume":" ","pages":"1-11"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic estimation of Hand Activity Level from upper-limb trajectories: a probabilistic regression framework.\",\"authors\":\"Ting-Hung Lin, Yu Hen Hu, Robert Radwin\",\"doi\":\"10.1080/00140139.2025.2543047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate measurement of Hand Activity Level (HAL) is crucial for evaluating musculoskeletal injury risk in repetitive hand-intensive work. Manual HAL assessments are often subjective and impractical for large-scale or continuous monitoring. This study presents a probabilistic regression framework that leverages video-based upper-limb pose trajectories to automatically estimate HAL scores while providing associated confidence measures. By enabling ergonomic risk assessment with quantified uncertainty, the proposed method delivers objective and reliable HAL predictions. Experimental results demonstrate strong in-domain performance (Root Mean Square Error [RMSE] = 0.24, Mean Absolute Error [MAE] = 0.17) and robust cross-domain generalisation (RMSE = 0.74, MAE = 0.54), highlighting both the accuracy and transferability of the framework.</p>\",\"PeriodicalId\":50503,\"journal\":{\"name\":\"Ergonomics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2025.2543047\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2025.2543047","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

准确测量手部活动水平(HAL)对于评估重复性手密集型工作中肌肉骨骼损伤风险至关重要。手动HAL评估通常是主观的,对于大规模或连续的监测是不切实际的。本研究提出了一个概率回归框架,该框架利用基于视频的上肢姿势轨迹来自动估计HAL分数,同时提供相关的置信度度量。通过量化不确定性的人体工程学风险评估,提出的方法提供客观可靠的HAL预测。实验结果显示了强大的域内性能(均方根误差[RMSE] = 0.24,平均绝对误差[MAE] = 0.17)和强大的跨域泛化(RMSE = 0.74, MAE = 0.54),突出了框架的准确性和可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic estimation of Hand Activity Level from upper-limb trajectories: a probabilistic regression framework.

Accurate measurement of Hand Activity Level (HAL) is crucial for evaluating musculoskeletal injury risk in repetitive hand-intensive work. Manual HAL assessments are often subjective and impractical for large-scale or continuous monitoring. This study presents a probabilistic regression framework that leverages video-based upper-limb pose trajectories to automatically estimate HAL scores while providing associated confidence measures. By enabling ergonomic risk assessment with quantified uncertainty, the proposed method delivers objective and reliable HAL predictions. Experimental results demonstrate strong in-domain performance (Root Mean Square Error [RMSE] = 0.24, Mean Absolute Error [MAE] = 0.17) and robust cross-domain generalisation (RMSE = 0.74, MAE = 0.54), highlighting both the accuracy and transferability of the framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ergonomics
Ergonomics 工程技术-工程:工业
CiteScore
4.60
自引率
12.50%
发文量
147
审稿时长
6 months
期刊介绍: Ergonomics, also known as human factors, is the scientific discipline that seeks to understand and improve human interactions with products, equipment, environments and systems. Drawing upon human biology, psychology, engineering and design, Ergonomics aims to develop and apply knowledge and techniques to optimise system performance, whilst protecting the health, safety and well-being of individuals involved. The attention of ergonomics extends across work, leisure and other aspects of our daily lives. The journal Ergonomics is an international refereed publication, with a 60 year tradition of disseminating high quality research. Original submissions, both theoretical and applied, are invited from across the subject, including physical, cognitive, organisational and environmental ergonomics. Papers reporting the findings of research from cognate disciplines are also welcome, where these contribute to understanding equipment, tasks, jobs, systems and environments and the corresponding needs, abilities and limitations of people. All published research articles in this journal have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信