确保医疗人工智能安全:可解释性驱动的虚假模型行为和相关数据检测和缓解。

IF 2.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Machine Learning Pub Date : 2025-01-01 Epub Date: 2025-08-12 DOI:10.1007/s10994-025-06834-w
Frederik Pahde, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek
{"title":"确保医疗人工智能安全:可解释性驱动的虚假模型行为和相关数据检测和缓解。","authors":"Frederik Pahde, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek","doi":"10.1007/s10994-025-06834-w","DOIUrl":null,"url":null,"abstract":"<p><p>Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"114 9","pages":"206"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343733/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ensuring medical AI safety: interpretability-driven detection and mitigation of spurious model behavior and associated data.\",\"authors\":\"Frederik Pahde, Thomas Wiegand, Sebastian Lapuschkin, Wojciech Samek\",\"doi\":\"10.1007/s10994-025-06834-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"114 9\",\"pages\":\"206\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-025-06834-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-025-06834-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络越来越多地应用于高风险的医疗应用,尽管它们倾向于在存在虚假相关性的情况下进行捷径学习,这在实践中可能会产生致命的后果。虽然许多工作都是孤立地解决这种捷径行为的检测或缓解问题,但reveal2revision方法提供了一个综合的偏见缓解框架,将这些步骤结合在一起。然而,有效地解决这些偏见往往需要领域专家大量的标签工作。在这项工作中,我们回顾了reveal2revision框架的步骤,并通过基于可解释性的半自动偏见注释功能对其进行了增强。这包括样本级和特征级偏差注释的方法,为偏差缓解方法提供有价值的信息,以消除不希望的快捷行为。我们使用跨两种模式的四个医疗数据集展示了该框架的适用性,这些数据集具有由数据工件引起的受控和真实的虚假相关性。我们成功地在VGG16、ResNet50和当代Vision Transformer模型中识别并减轻了这些偏差,最终提高了它们对现实世界医疗任务的鲁棒性和适用性。我们的代码可在https://github.com/frederikpahde/medical-ai-safety上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensuring medical AI safety: interpretability-driven detection and mitigation of spurious model behavior and associated data.

Deep neural networks are increasingly employed in high-stakes medical applications, despite their tendency for shortcut learning in the presence of spurious correlations, which can have potentially fatal consequences in practice. Whereas a multitude of works address either the detection or mitigation of such shortcut behavior in isolation, the Reveal2Revise approach provides a comprehensive bias mitigation framework combining these steps. However, effectively addressing these biases often requires substantial labeling efforts from domain experts. In this work, we review the steps of the Reveal2Revise framework and enhance it with semi-automated interpretability-based bias annotation capabilities. This includes methods for the sample- and feature-level bias annotation, providing valuable information for bias mitigation methods to unlearn the undesired shortcut behavior. We show the applicability of the framework using four medical datasets across two modalities, featuring controlled and real-world spurious correlations caused by data artifacts. We successfully identify and mitigate these biases in VGG16, ResNet50, and contemporary Vision Transformer models, ultimately increasing their robustness and applicability for real-world medical tasks. Our code is available at https://github.com/frederikpahde/medical-ai-safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信