在一组寻求经济补偿石棉沉滞症(PROSBEST)的申请人中进行人工智能评估的前瞻性验证。

IF 3.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Illaa Smesseim, Kevin B W Groot Lipman, Stefano Trebeschi, Martijn M Stuiver, Renaud Tissier, Jacobus A Burgers, Cornedine J de Gooijer
{"title":"在一组寻求经济补偿石棉沉滞症(PROSBEST)的申请人中进行人工智能评估的前瞻性验证。","authors":"Illaa Smesseim, Kevin B W Groot Lipman, Stefano Trebeschi, Martijn M Stuiver, Renaud Tissier, Jacobus A Burgers, Cornedine J de Gooijer","doi":"10.1186/s41747-025-00619-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Asbestosis, a rare pneumoconiosis marked by diffuse pulmonary fibrosis, arises from prolonged asbestos exposure. Its diagnosis, guided by the Helsinki criteria, relies on exposure history, clinical findings, radiology, and lung function. However, interobserver variability complicates diagnoses and financial compensation. This study prospectively validated the sensitivity of an AI-driven assessment for asbestosis compensation in the Netherlands. Secondary objectives included evaluating specificity, accuracy, predictive values, area under the curve of the receiver operating characteristic (ROC-AUC), area under the precision-recall curve (PR-AUC), and interobserver variability.</p><p><strong>Materials and methods: </strong>Between September 2020 and July 2022, 92 adult compensation applicants were assessed using both AI models and pulmonologists' reviews based on Dutch Health Council criteria. The AI model assigned an asbestosis probability score: negative (< 35), uncertain (35-66), or positive (≥ 66). Uncertain cases underwent additional reviews for a final determination.</p><p><strong>Results: </strong>The AI assessment demonstrated sensitivity of 0.86 (95% confidence interval: 0.77-0.95), specificity of 0.85 (0.76-0.97), accuracy of 0.87 (0.79-0.93), ROC-AUC of 0.92 (0.84-0.97), and PR-AUC of 0.95 (0.89-0.99). Despite strong metrics, the sensitivity target of 98% was unmet. Pulmonologist reviews showed moderate to substantial interobserver variability.</p><p><strong>Conclusion: </strong>The AI-driven approach demonstrated robust accuracy but insufficient sensitivity for validation. Addressing interobserver variability and incorporating objective fibrosis measurements could enhance future reliability in clinical and compensation settings.</p><p><strong>Relevance statement: </strong>The AI-driven assessment for financial compensation of asbestosis showed adequate accuracy but did not meet the required sensitivity for validation.</p><p><strong>Key points: </strong>We prospectively assessed the sensitivity of an AI-driven assessment procedure for financial compensation of asbestosis. The AI-driven asbestosis probability score underperformed across all metrics compared to internal testing. The AI-driven assessment procedure achieved a sensitivity of 0.86 (95% confidence interval: 0.77-0.95). It did not meet the predefined sensitivity target.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"76"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356797/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prospective validation of an artificial intelligence assessment in a cohort of applicants seeking financial compensation for asbestosis (PROSBEST).\",\"authors\":\"Illaa Smesseim, Kevin B W Groot Lipman, Stefano Trebeschi, Martijn M Stuiver, Renaud Tissier, Jacobus A Burgers, Cornedine J de Gooijer\",\"doi\":\"10.1186/s41747-025-00619-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Asbestosis, a rare pneumoconiosis marked by diffuse pulmonary fibrosis, arises from prolonged asbestos exposure. Its diagnosis, guided by the Helsinki criteria, relies on exposure history, clinical findings, radiology, and lung function. However, interobserver variability complicates diagnoses and financial compensation. This study prospectively validated the sensitivity of an AI-driven assessment for asbestosis compensation in the Netherlands. Secondary objectives included evaluating specificity, accuracy, predictive values, area under the curve of the receiver operating characteristic (ROC-AUC), area under the precision-recall curve (PR-AUC), and interobserver variability.</p><p><strong>Materials and methods: </strong>Between September 2020 and July 2022, 92 adult compensation applicants were assessed using both AI models and pulmonologists' reviews based on Dutch Health Council criteria. The AI model assigned an asbestosis probability score: negative (< 35), uncertain (35-66), or positive (≥ 66). Uncertain cases underwent additional reviews for a final determination.</p><p><strong>Results: </strong>The AI assessment demonstrated sensitivity of 0.86 (95% confidence interval: 0.77-0.95), specificity of 0.85 (0.76-0.97), accuracy of 0.87 (0.79-0.93), ROC-AUC of 0.92 (0.84-0.97), and PR-AUC of 0.95 (0.89-0.99). Despite strong metrics, the sensitivity target of 98% was unmet. Pulmonologist reviews showed moderate to substantial interobserver variability.</p><p><strong>Conclusion: </strong>The AI-driven approach demonstrated robust accuracy but insufficient sensitivity for validation. Addressing interobserver variability and incorporating objective fibrosis measurements could enhance future reliability in clinical and compensation settings.</p><p><strong>Relevance statement: </strong>The AI-driven assessment for financial compensation of asbestosis showed adequate accuracy but did not meet the required sensitivity for validation.</p><p><strong>Key points: </strong>We prospectively assessed the sensitivity of an AI-driven assessment procedure for financial compensation of asbestosis. The AI-driven asbestosis probability score underperformed across all metrics compared to internal testing. The AI-driven assessment procedure achieved a sensitivity of 0.86 (95% confidence interval: 0.77-0.95). It did not meet the predefined sensitivity target.</p>\",\"PeriodicalId\":36926,\"journal\":{\"name\":\"European Radiology Experimental\",\"volume\":\"9 1\",\"pages\":\"76\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356797/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology Experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41747-025-00619-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00619-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:石棉肺是一种罕见的以弥漫性肺纤维化为特征的尘肺病,由长期接触石棉引起。其诊断依据赫尔辛基标准,依赖于暴露史、临床表现、放射学和肺功能。然而,观察者之间的差异使诊断和经济补偿变得复杂。本研究前瞻性地验证了荷兰人工智能驱动的石棉沉滞赔偿评估的敏感性。次要目标包括评估特异性、准确性、预测值、受试者工作特征曲线下面积(ROC-AUC)、精密度-召回率曲线下面积(PR-AUC)和观察者间变异性。材料和方法:在2020年9月至2022年7月期间,根据荷兰卫生委员会的标准,使用人工智能模型和肺科医生的审查对92名成人补偿申请人进行了评估。AI模型给出了一个石棉沉滞概率评分:阴性(结果:AI评估的敏感性为0.86(95%置信区间:0.77-0.95),特异性为0.85(0.76-0.97),准确性为0.87 (0.79-0.93),ROC-AUC为0.92 (0.84-0.97),PR-AUC为0.95(0.89-0.99)。尽管有很强的指标,但98%的敏感性目标没有达到。肺科医师回顾显示观察者之间存在中度到实质性的差异。结论:人工智能驱动的方法具有可靠的准确性,但灵敏度不足,无法进行验证。解决观察者之间的可变性并结合客观纤维化测量可以提高临床和补偿设置的未来可靠性。相关性声明:人工智能驱动的石棉沉滞经济赔偿评估显示出足够的准确性,但未达到验证所需的灵敏度。重点:我们前瞻性地评估了人工智能驱动的评估程序对石棉沉滞经济赔偿的敏感性。与内部测试相比,人工智能驱动的石棉沉滞概率评分在所有指标上都表现不佳。人工智能驱动的评估程序的灵敏度为0.86(95%置信区间:0.77-0.95)。它没有达到预定的灵敏度目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prospective validation of an artificial intelligence assessment in a cohort of applicants seeking financial compensation for asbestosis (PROSBEST).

Background: Asbestosis, a rare pneumoconiosis marked by diffuse pulmonary fibrosis, arises from prolonged asbestos exposure. Its diagnosis, guided by the Helsinki criteria, relies on exposure history, clinical findings, radiology, and lung function. However, interobserver variability complicates diagnoses and financial compensation. This study prospectively validated the sensitivity of an AI-driven assessment for asbestosis compensation in the Netherlands. Secondary objectives included evaluating specificity, accuracy, predictive values, area under the curve of the receiver operating characteristic (ROC-AUC), area under the precision-recall curve (PR-AUC), and interobserver variability.

Materials and methods: Between September 2020 and July 2022, 92 adult compensation applicants were assessed using both AI models and pulmonologists' reviews based on Dutch Health Council criteria. The AI model assigned an asbestosis probability score: negative (< 35), uncertain (35-66), or positive (≥ 66). Uncertain cases underwent additional reviews for a final determination.

Results: The AI assessment demonstrated sensitivity of 0.86 (95% confidence interval: 0.77-0.95), specificity of 0.85 (0.76-0.97), accuracy of 0.87 (0.79-0.93), ROC-AUC of 0.92 (0.84-0.97), and PR-AUC of 0.95 (0.89-0.99). Despite strong metrics, the sensitivity target of 98% was unmet. Pulmonologist reviews showed moderate to substantial interobserver variability.

Conclusion: The AI-driven approach demonstrated robust accuracy but insufficient sensitivity for validation. Addressing interobserver variability and incorporating objective fibrosis measurements could enhance future reliability in clinical and compensation settings.

Relevance statement: The AI-driven assessment for financial compensation of asbestosis showed adequate accuracy but did not meet the required sensitivity for validation.

Key points: We prospectively assessed the sensitivity of an AI-driven assessment procedure for financial compensation of asbestosis. The AI-driven asbestosis probability score underperformed across all metrics compared to internal testing. The AI-driven assessment procedure achieved a sensitivity of 0.86 (95% confidence interval: 0.77-0.95). It did not meet the predefined sensitivity target.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信