Tengteng Li, Richard P Phillips, Matthias C Rillig, Gerrit Angst, E Toby Kiers, Paola Bonfante, Nico Eisenhauer, Zhanfeng Liu
{"title":"菌根同盟:森林碳协同与多功能恢复。","authors":"Tengteng Li, Richard P Phillips, Matthias C Rillig, Gerrit Angst, E Toby Kiers, Paola Bonfante, Nico Eisenhauer, Zhanfeng Liu","doi":"10.1016/j.tree.2025.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>While forest degradation persists across many regions, restoration efforts have predominantly targeted aboveground carbon, often overlooking critical belowground ecosystem functions. Plant-mycorrhizal associations - key connectors between aboveground and belowground biodiversity - can help to enhance both carbon storage and forest multifunctionality; yet their explicit integration into restoration frameworks remains limited. By synthesizing recent advancements, we highlight the role of plant-mycorrhizal diversity in enhancing soil carbon pools and supporting multiple ecosystem functions. By examining evidence-based restoration cases, we propose a framework linking plant-mycorrhizal associations to sustainably restore resilient and multifunctional forest ecosystems. Incorporating the functional traits of plant-mycorrhizal associations into restoration strategies provides a pathway to effectively address the interconnected biodiversity and climate crises.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":" ","pages":"983-994"},"PeriodicalIF":17.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycorrhizal allies: synergizing forest carbon and multifunctional restoration.\",\"authors\":\"Tengteng Li, Richard P Phillips, Matthias C Rillig, Gerrit Angst, E Toby Kiers, Paola Bonfante, Nico Eisenhauer, Zhanfeng Liu\",\"doi\":\"10.1016/j.tree.2025.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While forest degradation persists across many regions, restoration efforts have predominantly targeted aboveground carbon, often overlooking critical belowground ecosystem functions. Plant-mycorrhizal associations - key connectors between aboveground and belowground biodiversity - can help to enhance both carbon storage and forest multifunctionality; yet their explicit integration into restoration frameworks remains limited. By synthesizing recent advancements, we highlight the role of plant-mycorrhizal diversity in enhancing soil carbon pools and supporting multiple ecosystem functions. By examining evidence-based restoration cases, we propose a framework linking plant-mycorrhizal associations to sustainably restore resilient and multifunctional forest ecosystems. Incorporating the functional traits of plant-mycorrhizal associations into restoration strategies provides a pathway to effectively address the interconnected biodiversity and climate crises.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":\" \",\"pages\":\"983-994\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2025.07.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2025.07.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Mycorrhizal allies: synergizing forest carbon and multifunctional restoration.
While forest degradation persists across many regions, restoration efforts have predominantly targeted aboveground carbon, often overlooking critical belowground ecosystem functions. Plant-mycorrhizal associations - key connectors between aboveground and belowground biodiversity - can help to enhance both carbon storage and forest multifunctionality; yet their explicit integration into restoration frameworks remains limited. By synthesizing recent advancements, we highlight the role of plant-mycorrhizal diversity in enhancing soil carbon pools and supporting multiple ecosystem functions. By examining evidence-based restoration cases, we propose a framework linking plant-mycorrhizal associations to sustainably restore resilient and multifunctional forest ecosystems. Incorporating the functional traits of plant-mycorrhizal associations into restoration strategies provides a pathway to effectively address the interconnected biodiversity and climate crises.
期刊介绍:
Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.