Song Zhang, Da-Jie Ding, Ben-Jiang Mao, Ren-Hong Zhuo, Jing Cheng, Hui Zheng, Ji-Lu Lv, Yi-Xin Liu
{"title":"CAEP建立的241Am-Be中子参考辐射场研究。","authors":"Song Zhang, Da-Jie Ding, Ben-Jiang Mao, Ren-Hong Zhuo, Jing Cheng, Hui Zheng, Ji-Lu Lv, Yi-Xin Liu","doi":"10.1093/rpd/ncaf094","DOIUrl":null,"url":null,"abstract":"<p><p>In order to evaluate the field characteristics and instrument calibration capability of the 241Am-Be neutron reference radiation field at China Academy of Engineering Physics (CAEP), this paper conducted a series of researches on the radiation field. Firstly, the neutron energy spectrum of the field was investigated by multi-sphere spectrometer and Geant4. Secondly, the quantity transmission from China Institute of Atomic Energy (CIAE) to CAEP was achieved through the precision long counter system. In addition, three neutron dose rate meters from different manufacturers were calibrated in both the fields at CAEP and CIAE. Finally, the uncertainty of calibration factor for each instrument was calculated and validated in the two fields. The results demonstrated that the room scatter in the neutron radiation reference field at CAEP meet the requirement of ISO 8529 and the neutron energy spectrum measured in the field was acceptable. The range of neutron ambient dose equivalent rate that can be produced at CAEP and its uncertainty were determined. The calibration factors and their extended uncertainties obtained using two instruments in both fields were found to be reasonable and reliable. The radiation field established at CAEP can meet the routine calibration and experiment of common neutron dose rate meters.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":" ","pages":"1068-1080"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the 241Am-Be neutron reference radiation field established at CAEP.\",\"authors\":\"Song Zhang, Da-Jie Ding, Ben-Jiang Mao, Ren-Hong Zhuo, Jing Cheng, Hui Zheng, Ji-Lu Lv, Yi-Xin Liu\",\"doi\":\"10.1093/rpd/ncaf094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In order to evaluate the field characteristics and instrument calibration capability of the 241Am-Be neutron reference radiation field at China Academy of Engineering Physics (CAEP), this paper conducted a series of researches on the radiation field. Firstly, the neutron energy spectrum of the field was investigated by multi-sphere spectrometer and Geant4. Secondly, the quantity transmission from China Institute of Atomic Energy (CIAE) to CAEP was achieved through the precision long counter system. In addition, three neutron dose rate meters from different manufacturers were calibrated in both the fields at CAEP and CIAE. Finally, the uncertainty of calibration factor for each instrument was calculated and validated in the two fields. The results demonstrated that the room scatter in the neutron radiation reference field at CAEP meet the requirement of ISO 8529 and the neutron energy spectrum measured in the field was acceptable. The range of neutron ambient dose equivalent rate that can be produced at CAEP and its uncertainty were determined. The calibration factors and their extended uncertainties obtained using two instruments in both fields were found to be reasonable and reliable. The radiation field established at CAEP can meet the routine calibration and experiment of common neutron dose rate meters.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":\" \",\"pages\":\"1068-1080\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncaf094\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncaf094","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Study on the 241Am-Be neutron reference radiation field established at CAEP.
In order to evaluate the field characteristics and instrument calibration capability of the 241Am-Be neutron reference radiation field at China Academy of Engineering Physics (CAEP), this paper conducted a series of researches on the radiation field. Firstly, the neutron energy spectrum of the field was investigated by multi-sphere spectrometer and Geant4. Secondly, the quantity transmission from China Institute of Atomic Energy (CIAE) to CAEP was achieved through the precision long counter system. In addition, three neutron dose rate meters from different manufacturers were calibrated in both the fields at CAEP and CIAE. Finally, the uncertainty of calibration factor for each instrument was calculated and validated in the two fields. The results demonstrated that the room scatter in the neutron radiation reference field at CAEP meet the requirement of ISO 8529 and the neutron energy spectrum measured in the field was acceptable. The range of neutron ambient dose equivalent rate that can be produced at CAEP and its uncertainty were determined. The calibration factors and their extended uncertainties obtained using two instruments in both fields were found to be reasonable and reliable. The radiation field established at CAEP can meet the routine calibration and experiment of common neutron dose rate meters.
期刊介绍:
Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.