Radwa Hamdy Abd Allah, Safia Samir, Sami Mohamed Nasr, Mohamed Khaled Ibrahim
{"title":"山奈酚对肺炎克雷伯菌临床分离株生物膜形成的影响。","authors":"Radwa Hamdy Abd Allah, Safia Samir, Sami Mohamed Nasr, Mohamed Khaled Ibrahim","doi":"10.2174/0118722083386487250804015300","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Biofilm production is a key factor in the development of antibiotic resistance in multidrug-resistant Klebsiella pneumoniae (K. pneumoniae), a significant contributor to healthcare-associated infections (HAIs). Kaempferol, a flavonoid, is widely recognized for its ability to combat various microorganisms.</p><p><strong>Aim: </strong>Our goal is to assess the impact of kaempferol on K. pneumoniae biofilms by determining the level of gene expression for the biofilm-forming genes.</p><p><strong>Methods: </strong>Fifty K. pneumoniae isolates were studied. Different doses of kaempferol with a concentration range of 0.04 to 100% in Luria Bertani broth (LB) medium were incubated at 37℃ for 24 h with forty-three K. pneumoniae strong and intermediate biofilm producers. The minimum inhibitory concentration (MIC) of kaempferol was determined. Molecular detection of the biofilm-forming genes (mrkA, pgaA, wbbM, and wzm) was performed on all isolates before and after kaempferol treatment at 0.5 x MIC.</p><p><strong>Results: </strong>Seven isolates out of 50 (14%) exhibited weak biofilm formation ability, 6 out of 50 (12%) were moderate producers, and 37 out of 50 (74%) were strong producers. The MIC values of kaempferol for K. pneumoniae ranged from 50% to 6.25% (p = 0.0003). The levels of expression of the studied genes were slightly decreased after treatment compared with their corresponding values before treatment.</p><p><strong>Conclusion: </strong>Based on current knowledge, few research studies have investigated the impact of kaempferol on K. pneumoniae biofilms. Our results show that its effect on the biofilms of this bacterium is moderate to weak. Further research is necessary to determine potential synergies with other treatments.</p>","PeriodicalId":21064,"journal":{"name":"Recent patents on biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Kaempferol against Biofilm Formation by Klebsiella pneumoniae Clinical Isolates.\",\"authors\":\"Radwa Hamdy Abd Allah, Safia Samir, Sami Mohamed Nasr, Mohamed Khaled Ibrahim\",\"doi\":\"10.2174/0118722083386487250804015300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Biofilm production is a key factor in the development of antibiotic resistance in multidrug-resistant Klebsiella pneumoniae (K. pneumoniae), a significant contributor to healthcare-associated infections (HAIs). Kaempferol, a flavonoid, is widely recognized for its ability to combat various microorganisms.</p><p><strong>Aim: </strong>Our goal is to assess the impact of kaempferol on K. pneumoniae biofilms by determining the level of gene expression for the biofilm-forming genes.</p><p><strong>Methods: </strong>Fifty K. pneumoniae isolates were studied. Different doses of kaempferol with a concentration range of 0.04 to 100% in Luria Bertani broth (LB) medium were incubated at 37℃ for 24 h with forty-three K. pneumoniae strong and intermediate biofilm producers. The minimum inhibitory concentration (MIC) of kaempferol was determined. Molecular detection of the biofilm-forming genes (mrkA, pgaA, wbbM, and wzm) was performed on all isolates before and after kaempferol treatment at 0.5 x MIC.</p><p><strong>Results: </strong>Seven isolates out of 50 (14%) exhibited weak biofilm formation ability, 6 out of 50 (12%) were moderate producers, and 37 out of 50 (74%) were strong producers. The MIC values of kaempferol for K. pneumoniae ranged from 50% to 6.25% (p = 0.0003). The levels of expression of the studied genes were slightly decreased after treatment compared with their corresponding values before treatment.</p><p><strong>Conclusion: </strong>Based on current knowledge, few research studies have investigated the impact of kaempferol on K. pneumoniae biofilms. Our results show that its effect on the biofilms of this bacterium is moderate to weak. Further research is necessary to determine potential synergies with other treatments.</p>\",\"PeriodicalId\":21064,\"journal\":{\"name\":\"Recent patents on biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118722083386487250804015300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118722083386487250804015300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Effect of Kaempferol against Biofilm Formation by Klebsiella pneumoniae Clinical Isolates.
Background: Biofilm production is a key factor in the development of antibiotic resistance in multidrug-resistant Klebsiella pneumoniae (K. pneumoniae), a significant contributor to healthcare-associated infections (HAIs). Kaempferol, a flavonoid, is widely recognized for its ability to combat various microorganisms.
Aim: Our goal is to assess the impact of kaempferol on K. pneumoniae biofilms by determining the level of gene expression for the biofilm-forming genes.
Methods: Fifty K. pneumoniae isolates were studied. Different doses of kaempferol with a concentration range of 0.04 to 100% in Luria Bertani broth (LB) medium were incubated at 37℃ for 24 h with forty-three K. pneumoniae strong and intermediate biofilm producers. The minimum inhibitory concentration (MIC) of kaempferol was determined. Molecular detection of the biofilm-forming genes (mrkA, pgaA, wbbM, and wzm) was performed on all isolates before and after kaempferol treatment at 0.5 x MIC.
Results: Seven isolates out of 50 (14%) exhibited weak biofilm formation ability, 6 out of 50 (12%) were moderate producers, and 37 out of 50 (74%) were strong producers. The MIC values of kaempferol for K. pneumoniae ranged from 50% to 6.25% (p = 0.0003). The levels of expression of the studied genes were slightly decreased after treatment compared with their corresponding values before treatment.
Conclusion: Based on current knowledge, few research studies have investigated the impact of kaempferol on K. pneumoniae biofilms. Our results show that its effect on the biofilms of this bacterium is moderate to weak. Further research is necessary to determine potential synergies with other treatments.
期刊介绍:
Recent Patents on Biotechnology publishes review articles by experts on recent patents on biotechnology. A selection of important and recent patents on biotechnology is also included in the journal. The journal is essential reading for all researchers involved in all fields of biotechnology.