孢子和花粉粒全球模式的新模型。

IF 2.5 3区 生物学 Q3 CELL BIOLOGY
Kun L Yang, Zhu L Yang, Yang Luo, Jia Y Lin, Hong Wang, Pan Meng Wang
{"title":"孢子和花粉粒全球模式的新模型。","authors":"Kun L Yang, Zhu L Yang, Yang Luo, Jia Y Lin, Hong Wang, Pan Meng Wang","doi":"10.1007/s00709-025-02103-8","DOIUrl":null,"url":null,"abstract":"<p><p>Spores of fungi and seedless plants, and pollen grains of seed plants, are usually characterized by variable global patterns on the surface. However, the mechanisms responsible for the development of these patterns have not been fully understood. We hypothesize that the global pattern of a spore or pollen grain is induced by the stresses resulted from the mismatch between a faster-growing outer part and a slower-growing inner part within the grain and tried to verify the hypothesis by simplifying the developing spores and pollen grains as stressed core/shell structures, simulating the buckling patterns of such structures with different shapes and shell thicknesses through finite element method, and comparing the simulated models with natural spores and pollen grains observed under microscopes. Totally, 313 models were simulated and 77 natural instances were studied. The simulated models reproduced various global patterns generally corresponding to the natural instances from a mechanical point of view. Our findings suggest that stress-driven development potentially contributes to the global patterning of spores and pollen grains, with the shape and thickness of the faster-growing outer part at the beginning of the differential growth determining the pattern types, providing new insights into the development and evolution of the global patterns on spores and pollen grains.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new model for the global patterning of spores and pollen grains.\",\"authors\":\"Kun L Yang, Zhu L Yang, Yang Luo, Jia Y Lin, Hong Wang, Pan Meng Wang\",\"doi\":\"10.1007/s00709-025-02103-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spores of fungi and seedless plants, and pollen grains of seed plants, are usually characterized by variable global patterns on the surface. However, the mechanisms responsible for the development of these patterns have not been fully understood. We hypothesize that the global pattern of a spore or pollen grain is induced by the stresses resulted from the mismatch between a faster-growing outer part and a slower-growing inner part within the grain and tried to verify the hypothesis by simplifying the developing spores and pollen grains as stressed core/shell structures, simulating the buckling patterns of such structures with different shapes and shell thicknesses through finite element method, and comparing the simulated models with natural spores and pollen grains observed under microscopes. Totally, 313 models were simulated and 77 natural instances were studied. The simulated models reproduced various global patterns generally corresponding to the natural instances from a mechanical point of view. Our findings suggest that stress-driven development potentially contributes to the global patterning of spores and pollen grains, with the shape and thickness of the faster-growing outer part at the beginning of the differential growth determining the pattern types, providing new insights into the development and evolution of the global patterns on spores and pollen grains.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-025-02103-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-025-02103-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真菌和无籽植物的孢子,以及种子植物的花粉粒,其表面通常具有不同的全局模式。然而,负责开发这些模式的机制还没有被完全理解。我们假设孢子或花粉粒的全局格局是由颗粒内生长较快的外层与生长较慢的内层不匹配所产生的应力引起的,并试图将发育中的孢子和花粉粒简化为受应力的核/壳结构,通过有限元方法模拟不同形状和壳厚的核/壳结构的屈曲模式来验证这一假设。并将模拟模型与显微镜下观察到的天然孢子和花粉粒进行比较。共模拟了313个模式,研究了77个自然实例。从力学的角度来看,模拟模型再现了与自然实例大致对应的各种全球模式。我们的研究结果表明,应力驱动的发育可能有助于孢子和花粉粒的全局模式,而在差异生长开始时生长较快的外部部分的形状和厚度决定了模式类型,为孢子和花粉粒的全局模式的发育和演化提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new model for the global patterning of spores and pollen grains.

Spores of fungi and seedless plants, and pollen grains of seed plants, are usually characterized by variable global patterns on the surface. However, the mechanisms responsible for the development of these patterns have not been fully understood. We hypothesize that the global pattern of a spore or pollen grain is induced by the stresses resulted from the mismatch between a faster-growing outer part and a slower-growing inner part within the grain and tried to verify the hypothesis by simplifying the developing spores and pollen grains as stressed core/shell structures, simulating the buckling patterns of such structures with different shapes and shell thicknesses through finite element method, and comparing the simulated models with natural spores and pollen grains observed under microscopes. Totally, 313 models were simulated and 77 natural instances were studied. The simulated models reproduced various global patterns generally corresponding to the natural instances from a mechanical point of view. Our findings suggest that stress-driven development potentially contributes to the global patterning of spores and pollen grains, with the shape and thickness of the faster-growing outer part at the beginning of the differential growth determining the pattern types, providing new insights into the development and evolution of the global patterns on spores and pollen grains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信