DNA语言模型预测罕见编码变异致病性的能力评估。

IF 2.5 3区 生物学 Q2 GENETICS & HEREDITY
David Curtis
{"title":"DNA语言模型预测罕见编码变异致病性的能力评估。","authors":"David Curtis","doi":"10.1038/s10038-025-01385-3","DOIUrl":null,"url":null,"abstract":"<p><p>A recently described method to predict pathogenicity of DNA variants uses a DNA language model and can be applied to both coding and non-coding variants. For coding variants the performance of this method, termed GPN-MSA (genomic pretrained network with multiple-sequence alignment), was reported to be superior to CADD. We compare the performance of this method against 45 other predictors applied to rare coding variants in 18 gene-phenotype pairs. We find that while GPN-MSA produces stronger evidence for association than CADD it is not the best-performing method for any gene and on average other prediction methods are superior. While GPN-MSA may be useful for predicting the pathogenicity of non-coding variants, it would seem sensible for clinicians and researchers to utilise other methods when dealing with coding variants.This research has been conducted using the UK Biobank Resource.</p>","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of ability of a DNA language model to predict pathogenicity of rare coding variants.\",\"authors\":\"David Curtis\",\"doi\":\"10.1038/s10038-025-01385-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A recently described method to predict pathogenicity of DNA variants uses a DNA language model and can be applied to both coding and non-coding variants. For coding variants the performance of this method, termed GPN-MSA (genomic pretrained network with multiple-sequence alignment), was reported to be superior to CADD. We compare the performance of this method against 45 other predictors applied to rare coding variants in 18 gene-phenotype pairs. We find that while GPN-MSA produces stronger evidence for association than CADD it is not the best-performing method for any gene and on average other prediction methods are superior. While GPN-MSA may be useful for predicting the pathogenicity of non-coding variants, it would seem sensible for clinicians and researchers to utilise other methods when dealing with coding variants.This research has been conducted using the UK Biobank Resource.</p>\",\"PeriodicalId\":16077,\"journal\":{\"name\":\"Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s10038-025-01385-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s10038-025-01385-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

最近描述的一种预测DNA变异致病性的方法使用DNA语言模型,可以应用于编码和非编码变异。对于编码变异,这种被称为GPN-MSA(基因组预训练网络与多序列比对)的方法的性能据报道优于CADD。我们将该方法的性能与其他45个用于18个基因表型对的罕见编码变异的预测因子进行了比较。我们发现,虽然GPN-MSA比CADD提供了更有力的关联证据,但它并不是任何基因的最佳预测方法,平均而言,其他预测方法更优越。虽然GPN-MSA可能对预测非编码变异的致病性有用,但临床医生和研究人员在处理编码变异时使用其他方法似乎是明智的。这项研究是利用英国生物银行资源进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of ability of a DNA language model to predict pathogenicity of rare coding variants.

A recently described method to predict pathogenicity of DNA variants uses a DNA language model and can be applied to both coding and non-coding variants. For coding variants the performance of this method, termed GPN-MSA (genomic pretrained network with multiple-sequence alignment), was reported to be superior to CADD. We compare the performance of this method against 45 other predictors applied to rare coding variants in 18 gene-phenotype pairs. We find that while GPN-MSA produces stronger evidence for association than CADD it is not the best-performing method for any gene and on average other prediction methods are superior. While GPN-MSA may be useful for predicting the pathogenicity of non-coding variants, it would seem sensible for clinicians and researchers to utilise other methods when dealing with coding variants.This research has been conducted using the UK Biobank Resource.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信