量化黄斑孔手术中最佳内限制膜剥离:用于预测建模和示意图可视化的机器学习框架。

IF 3.8 3区 医学 Q2 MEDICAL INFORMATICS
Xiang Zhang, Hongjie Ma, Song Lin, Ledong Zhao, Lu Chen, Zetong Nie, Zhaoxiong Wang, Chang Liu, Xiaorong Li, Wenbo Li, Bojie Hu
{"title":"量化黄斑孔手术中最佳内限制膜剥离:用于预测建模和示意图可视化的机器学习框架。","authors":"Xiang Zhang, Hongjie Ma, Song Lin, Ledong Zhao, Lu Chen, Zetong Nie, Zhaoxiong Wang, Chang Liu, Xiaorong Li, Wenbo Li, Bojie Hu","doi":"10.1186/s12911-025-03140-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Internal limiting membrane (ILM) peeling in macular hole (MH) surgery is critical but challenging, and current practices lack standardized tools for quantifying and visualizing optimal peeling dimensions.This study aimed to develop a machine learning framework to recommend surgeon-specific ILM peeling radius during macular hole surgery, integrating predictive modeling with schematic visualization to guide operative planning.</p><p><strong>Methods: </strong>This retrospective study analyzed data from 95 patients with idiopathic MH who underwent vitrectomy with ILM peeling. Preoperative and postoperative optical coherence tomography (OCT) images were used to measure key MH parameters, including minimum diameter (MIN), base width (BASE), temporal length (T), nasal length (N), and height (H). The dataset was preprocessed by addressing missing values and applying Z-score normalization. 10 regression models were trained and evaluated using an 80 - 20 train-test split. Model performance was assessed using root mean squared error (RMSE), mean squared error (MSE), mean absolute error (MAE), and the coefficient of determination (R²). A graphical user interface (GUI) was developed to generate ILM peeling schematic diagrams from OCT data.</p><p><strong>Results: </strong>The Ridge Regression model demonstrated the best performance, with an RMSE of 0.0320, MSE of 0.0010, MAE of 0.0209, and R² of 0.9427. The generated ILM peeling schematic diagrams provided clear visual representations, aiding surgical planning and education.</p><p><strong>Conclusion: </strong>The Ridge Regression model effectively predicts the optimal ILM peeling radius. The integration of schematic diagram generation enhances surgical planning and provides valuable educational resources, highlighting the potential of machine learning and visualization tools in improving MH surgery outcomes.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"309"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantifying optimal inner limiting membrane peeling in macular hole surgery: a machine learning framework for predictive modeling and schematic visualization.\",\"authors\":\"Xiang Zhang, Hongjie Ma, Song Lin, Ledong Zhao, Lu Chen, Zetong Nie, Zhaoxiong Wang, Chang Liu, Xiaorong Li, Wenbo Li, Bojie Hu\",\"doi\":\"10.1186/s12911-025-03140-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Internal limiting membrane (ILM) peeling in macular hole (MH) surgery is critical but challenging, and current practices lack standardized tools for quantifying and visualizing optimal peeling dimensions.This study aimed to develop a machine learning framework to recommend surgeon-specific ILM peeling radius during macular hole surgery, integrating predictive modeling with schematic visualization to guide operative planning.</p><p><strong>Methods: </strong>This retrospective study analyzed data from 95 patients with idiopathic MH who underwent vitrectomy with ILM peeling. Preoperative and postoperative optical coherence tomography (OCT) images were used to measure key MH parameters, including minimum diameter (MIN), base width (BASE), temporal length (T), nasal length (N), and height (H). The dataset was preprocessed by addressing missing values and applying Z-score normalization. 10 regression models were trained and evaluated using an 80 - 20 train-test split. Model performance was assessed using root mean squared error (RMSE), mean squared error (MSE), mean absolute error (MAE), and the coefficient of determination (R²). A graphical user interface (GUI) was developed to generate ILM peeling schematic diagrams from OCT data.</p><p><strong>Results: </strong>The Ridge Regression model demonstrated the best performance, with an RMSE of 0.0320, MSE of 0.0010, MAE of 0.0209, and R² of 0.9427. The generated ILM peeling schematic diagrams provided clear visual representations, aiding surgical planning and education.</p><p><strong>Conclusion: </strong>The Ridge Regression model effectively predicts the optimal ILM peeling radius. The integration of schematic diagram generation enhances surgical planning and provides valuable educational resources, highlighting the potential of machine learning and visualization tools in improving MH surgery outcomes.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"25 1\",\"pages\":\"309\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12355892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-025-03140-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-03140-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

目的:黄斑孔(MH)手术中的内限制膜(ILM)剥离是关键但具有挑战性的,目前的实践缺乏标准化的工具来量化和可视化最佳剥离尺寸。本研究旨在开发一个机器学习框架,在黄斑孔手术中推荐外科医生特定的ILM剥离半径,将预测建模与示意图可视化相结合,以指导手术计划。方法:本回顾性研究分析95例接受玻璃体切除术并内膜剥离的特发性MH患者的资料。术前和术后使用光学相干断层扫描(OCT)图像测量关键MH参数,包括最小直径(MIN),基底宽度(base),颞长(T),鼻长(N)和高度(H)。通过处理缺失值和应用z得分归一化对数据集进行预处理。10个回归模型训练和评估使用80 - 20训练测试分裂。采用均方根误差(RMSE)、均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)评估模型的性能。开发了一个图形用户界面(GUI),用于从OCT数据生成ILM剥离示意图。结果:岭回归模型表现最佳,RMSE为0.0320,MSE为0.0010,MAE为0.0209,R²为0.9427。生成的ILM剥离示意图提供了清晰的视觉表现,有助于手术计划和教育。结论:Ridge回归模型能有效预测ILM的最佳剥离半径。原理图生成的集成增强了手术计划,并提供了宝贵的教育资源,突出了机器学习和可视化工具在改善MH手术结果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying optimal inner limiting membrane peeling in macular hole surgery: a machine learning framework for predictive modeling and schematic visualization.

Purpose: Internal limiting membrane (ILM) peeling in macular hole (MH) surgery is critical but challenging, and current practices lack standardized tools for quantifying and visualizing optimal peeling dimensions.This study aimed to develop a machine learning framework to recommend surgeon-specific ILM peeling radius during macular hole surgery, integrating predictive modeling with schematic visualization to guide operative planning.

Methods: This retrospective study analyzed data from 95 patients with idiopathic MH who underwent vitrectomy with ILM peeling. Preoperative and postoperative optical coherence tomography (OCT) images were used to measure key MH parameters, including minimum diameter (MIN), base width (BASE), temporal length (T), nasal length (N), and height (H). The dataset was preprocessed by addressing missing values and applying Z-score normalization. 10 regression models were trained and evaluated using an 80 - 20 train-test split. Model performance was assessed using root mean squared error (RMSE), mean squared error (MSE), mean absolute error (MAE), and the coefficient of determination (R²). A graphical user interface (GUI) was developed to generate ILM peeling schematic diagrams from OCT data.

Results: The Ridge Regression model demonstrated the best performance, with an RMSE of 0.0320, MSE of 0.0010, MAE of 0.0209, and R² of 0.9427. The generated ILM peeling schematic diagrams provided clear visual representations, aiding surgical planning and education.

Conclusion: The Ridge Regression model effectively predicts the optimal ILM peeling radius. The integration of schematic diagram generation enhances surgical planning and provides valuable educational resources, highlighting the potential of machine learning and visualization tools in improving MH surgery outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信