随机梯度上升法测定单分子x射线散射图像的结构。

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Steffen Schultze, D. Russell Luke and Helmut Grubmüller*, 
{"title":"随机梯度上升法测定单分子x射线散射图像的结构。","authors":"Steffen Schultze,&nbsp;D. Russell Luke and Helmut Grubmüller*,&nbsp;","doi":"10.1021/acs.jctc.5c00748","DOIUrl":null,"url":null,"abstract":"<p >Scattering experiments using ultrashort X-ray free electron laser pulses have opened a new path for structure determination of a wide variety of specimens, including nanocrystals and entire viruses, approaching atomistic spatial and femtoseconds time resolution. However, random and unknown sample orientations as well as low signal-to-noise ratios have so far prevented a successful application to smaller specimens like single biomolecules. We here present resolution-annealed stochastic gradient ascent (RASTA), a new approach for direct atomistic electron density determination, which utilizes our recently developed rigorous Bayesian treatment of single-particle X-ray scattering. We demonstrate electron density determination at 2 Å resolution of various small proteins from synthetic scattering images with as low as 15 photons per image.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 16","pages":"8227–8234"},"PeriodicalIF":5.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5c00748","citationCount":"0","resultStr":"{\"title\":\"Structure Determination from Single-Molecule X-ray Scattering Images Using Stochastic Gradient Ascent\",\"authors\":\"Steffen Schultze,&nbsp;D. Russell Luke and Helmut Grubmüller*,&nbsp;\",\"doi\":\"10.1021/acs.jctc.5c00748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Scattering experiments using ultrashort X-ray free electron laser pulses have opened a new path for structure determination of a wide variety of specimens, including nanocrystals and entire viruses, approaching atomistic spatial and femtoseconds time resolution. However, random and unknown sample orientations as well as low signal-to-noise ratios have so far prevented a successful application to smaller specimens like single biomolecules. We here present resolution-annealed stochastic gradient ascent (RASTA), a new approach for direct atomistic electron density determination, which utilizes our recently developed rigorous Bayesian treatment of single-particle X-ray scattering. We demonstrate electron density determination at 2 Å resolution of various small proteins from synthetic scattering images with as low as 15 photons per image.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\"21 16\",\"pages\":\"8227–8234\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.5c00748\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00748\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00748","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用超短x射线自由电子激光脉冲进行散射实验,为包括纳米晶体和整个病毒在内的各种样品的结构测定开辟了一条新的途径,接近原子空间和飞秒时间分辨率。然而,到目前为止,随机和未知的样品方向以及低信噪比阻碍了像单个生物分子这样的小样本的成功应用。我们在这里提出了分辨率退火随机梯度上升(RASTA),这是一种直接测定原子电子密度的新方法,它利用了我们最近开发的单粒子x射线散射的严格贝叶斯处理。我们演示了电子密度测定在2 Å分辨率的各种小蛋白质的合成散射图像低至15光子每张图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure Determination from Single-Molecule X-ray Scattering Images Using Stochastic Gradient Ascent

Scattering experiments using ultrashort X-ray free electron laser pulses have opened a new path for structure determination of a wide variety of specimens, including nanocrystals and entire viruses, approaching atomistic spatial and femtoseconds time resolution. However, random and unknown sample orientations as well as low signal-to-noise ratios have so far prevented a successful application to smaller specimens like single biomolecules. We here present resolution-annealed stochastic gradient ascent (RASTA), a new approach for direct atomistic electron density determination, which utilizes our recently developed rigorous Bayesian treatment of single-particle X-ray scattering. We demonstrate electron density determination at 2 Å resolution of various small proteins from synthetic scattering images with as low as 15 photons per image.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信