范德华均匀层中铁电驱动的层间磁相变。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiale Wang, Xinru Li, Yibo Liu, Ying Dai, Baibiao Huang, Yandong Ma
{"title":"范德华均匀层中铁电驱动的层间磁相变。","authors":"Jiale Wang, Xinru Li, Yibo Liu, Ying Dai, Baibiao Huang, Yandong Ma","doi":"10.1039/d5mh01095k","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring magnetoelectric coupling in bilayers represents a particularly intriguing topic in multiferroic physics, with current efforts predominantly focused on heterobilayer architectures. Herein, we present an unconventional approach to achieve electrically controlled interlayer magnetic phase switching in homobilayer systems. Our mechanism mediates reversible ferroelectrically driven transitions between antiferromagnetic (AFM) and ferromagnetic (FM) orders <i>via</i> polarization-dependent band engineering. The underlying mechanism stems from symmetry-broken interlayer charge transfer: antiparallel ferroelectric polarization enforces a parallel band configuration that stabilizes AFM interlayer coupling through local superexchange interactions, while parallel polarization creates type-III band alignment that satisfies the Stoner criterion and thus promotes FM interlayer ordering. Using first-principles, we demonstrate this paradigm in a Tl<sub>2</sub>NO<sub>2</sub> homobilayer. Notably, the AFM phase hosts coexisting layer-polarized valley and spin Hall currents, whereas these novel features become mutually exclusive in the FM phase, enabling nonvolatile ferroelectric switching of both valley and spin degrees of freedom. This work establishes a fundamental design principle for creating electrically addressable two-dimensional multiferroics.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectricity driven interlayer magnetic phase transitions in van der Waals homobilayers.\",\"authors\":\"Jiale Wang, Xinru Li, Yibo Liu, Ying Dai, Baibiao Huang, Yandong Ma\",\"doi\":\"10.1039/d5mh01095k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exploring magnetoelectric coupling in bilayers represents a particularly intriguing topic in multiferroic physics, with current efforts predominantly focused on heterobilayer architectures. Herein, we present an unconventional approach to achieve electrically controlled interlayer magnetic phase switching in homobilayer systems. Our mechanism mediates reversible ferroelectrically driven transitions between antiferromagnetic (AFM) and ferromagnetic (FM) orders <i>via</i> polarization-dependent band engineering. The underlying mechanism stems from symmetry-broken interlayer charge transfer: antiparallel ferroelectric polarization enforces a parallel band configuration that stabilizes AFM interlayer coupling through local superexchange interactions, while parallel polarization creates type-III band alignment that satisfies the Stoner criterion and thus promotes FM interlayer ordering. Using first-principles, we demonstrate this paradigm in a Tl<sub>2</sub>NO<sub>2</sub> homobilayer. Notably, the AFM phase hosts coexisting layer-polarized valley and spin Hall currents, whereas these novel features become mutually exclusive in the FM phase, enabling nonvolatile ferroelectric switching of both valley and spin degrees of freedom. This work establishes a fundamental design principle for creating electrically addressable two-dimensional multiferroics.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01095k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01095k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索双层中的磁电耦合是多铁物理中一个特别有趣的话题,目前的工作主要集中在异质双层结构上。在此,我们提出了一种非常规的方法来实现均匀层系统中的电控层间磁相开关。我们的机制介导可逆的铁电驱动过渡之间的反铁磁(AFM)和铁磁(FM)的极化依赖的波段工程。潜在的机制源于对称破缺的层间电荷转移:反平行铁电极化通过局部超交换相互作用实现了平行带配置,稳定了AFM层间耦合,而平行极化产生了满足斯通纳准则的iii型带对准,从而促进了FM层间有序。利用第一性原理,我们在Tl2NO2同质层中证明了这种范式。值得注意的是,AFM相位具有共存的层极化谷和自旋霍尔电流,而这些新特征在FM相位中变得相互排斥,从而实现谷和自旋自由度的非易失性铁电开关。这项工作建立了一个基本的设计原则,创造电寻址的二维多铁质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ferroelectricity driven interlayer magnetic phase transitions in van der Waals homobilayers.

Exploring magnetoelectric coupling in bilayers represents a particularly intriguing topic in multiferroic physics, with current efforts predominantly focused on heterobilayer architectures. Herein, we present an unconventional approach to achieve electrically controlled interlayer magnetic phase switching in homobilayer systems. Our mechanism mediates reversible ferroelectrically driven transitions between antiferromagnetic (AFM) and ferromagnetic (FM) orders via polarization-dependent band engineering. The underlying mechanism stems from symmetry-broken interlayer charge transfer: antiparallel ferroelectric polarization enforces a parallel band configuration that stabilizes AFM interlayer coupling through local superexchange interactions, while parallel polarization creates type-III band alignment that satisfies the Stoner criterion and thus promotes FM interlayer ordering. Using first-principles, we demonstrate this paradigm in a Tl2NO2 homobilayer. Notably, the AFM phase hosts coexisting layer-polarized valley and spin Hall currents, whereas these novel features become mutually exclusive in the FM phase, enabling nonvolatile ferroelectric switching of both valley and spin degrees of freedom. This work establishes a fundamental design principle for creating electrically addressable two-dimensional multiferroics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信