镧系(Co)掺杂氧化锆纳米晶表面发射的识别与消除。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-14 DOI:10.1021/acsnano.5c09137
Nico Reichholf, Sharona Horta, David Van der Heggen, Carlotta Seno, Jikson Pulparayil Mathew, Maria Ibáñez, Philippe F. Smet and Jonathan De Roo*, 
{"title":"镧系(Co)掺杂氧化锆纳米晶表面发射的识别与消除。","authors":"Nico Reichholf,&nbsp;Sharona Horta,&nbsp;David Van der Heggen,&nbsp;Carlotta Seno,&nbsp;Jikson Pulparayil Mathew,&nbsp;Maria Ibáñez,&nbsp;Philippe F. Smet and Jonathan De Roo*,&nbsp;","doi":"10.1021/acsnano.5c09137","DOIUrl":null,"url":null,"abstract":"<p >Zirconia nanocrystals (ZrO<sub>2</sub> NCs) are a stable host material for lanthanides, but their performance lags behind that of the leading NaYF<sub>4</sub> nanomaterials. Here, we leverage surface chemistry and core/shell architectures to uncover the contribution of dopants at the nanocrystal surface and of dopants in the nanocrystal bulk. We first assess the doping efficiency by ICP and find that, while Eu is almost quantitatively incorporated, the other lanthanides (La, Ce, Tb, Tm, Er, Yb) have about 50% incorporation efficiency over the studied doping range of 1–10%. We then determine the nanocrystal surface chemistry using NMR spectroscopy, despite the additional spectral line broadening caused by the paramagnetic lanthanide dopants. By varying the surface ligands and measuring the photoluminescence, we resolve the spectroscopic signals that are sensitive to a change in surface chemistry. Time-resolved emission spectra further reinforce the notion of a bulk component with a long luminescent lifetime and a surface component with a fast lifetime. Upon shelling Eu- or Tb-doped zirconia NCs with pure zirconia, the surface component disappears, and the photoluminescence quantum yield increases. We further functionalized the surface of the core/shell particles with oleylphosphonic acid ligands to obtain excellent dispersibility. These results show that lanthanide-doped zirconia NCs can be engineered to eliminate deactivation pathways.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 33","pages":"30371–30382"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Elimination of Surface Emission in Lanthanide (Co)doped Zirconia Nanocrystals\",\"authors\":\"Nico Reichholf,&nbsp;Sharona Horta,&nbsp;David Van der Heggen,&nbsp;Carlotta Seno,&nbsp;Jikson Pulparayil Mathew,&nbsp;Maria Ibáñez,&nbsp;Philippe F. Smet and Jonathan De Roo*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c09137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zirconia nanocrystals (ZrO<sub>2</sub> NCs) are a stable host material for lanthanides, but their performance lags behind that of the leading NaYF<sub>4</sub> nanomaterials. Here, we leverage surface chemistry and core/shell architectures to uncover the contribution of dopants at the nanocrystal surface and of dopants in the nanocrystal bulk. We first assess the doping efficiency by ICP and find that, while Eu is almost quantitatively incorporated, the other lanthanides (La, Ce, Tb, Tm, Er, Yb) have about 50% incorporation efficiency over the studied doping range of 1–10%. We then determine the nanocrystal surface chemistry using NMR spectroscopy, despite the additional spectral line broadening caused by the paramagnetic lanthanide dopants. By varying the surface ligands and measuring the photoluminescence, we resolve the spectroscopic signals that are sensitive to a change in surface chemistry. Time-resolved emission spectra further reinforce the notion of a bulk component with a long luminescent lifetime and a surface component with a fast lifetime. Upon shelling Eu- or Tb-doped zirconia NCs with pure zirconia, the surface component disappears, and the photoluminescence quantum yield increases. We further functionalized the surface of the core/shell particles with oleylphosphonic acid ligands to obtain excellent dispersibility. These results show that lanthanide-doped zirconia NCs can be engineered to eliminate deactivation pathways.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 33\",\"pages\":\"30371–30382\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c09137\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c09137","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化锆纳米晶体(ZrO2 NCs)是一种稳定的镧系元素载体材料,但其性能落后于主要的纳米材料NaYF4。在这里,我们利用表面化学和核/壳结构来揭示纳米晶体表面和纳米晶体体中掺杂剂的贡献。我们首先通过ICP评估掺杂效率,发现Eu几乎被定量掺入,而其他镧系元素(La, Ce, Tb, Tm, Er, Yb)在1-10%的掺杂范围内的掺入效率约为50%。然后,我们使用核磁共振光谱确定纳米晶体的表面化学性质,尽管顺磁性镧系元素掺杂引起了额外的谱线拓宽。通过改变表面配体和测量光致发光,我们解析了对表面化学变化敏感的光谱信号。时间分辨发射光谱进一步强化了本体成分具有长发光寿命和表面成分具有快速发光寿命的概念。用纯氧化锆去壳后,表面成分消失,光致发光量子产率增加。我们进一步用油基膦酸配体对核/壳颗粒表面进行功能化,以获得优异的分散性。这些结果表明,镧系掺杂氧化锆NCs可以被设计来消除失活途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identification and Elimination of Surface Emission in Lanthanide (Co)doped Zirconia Nanocrystals

Identification and Elimination of Surface Emission in Lanthanide (Co)doped Zirconia Nanocrystals

Zirconia nanocrystals (ZrO2 NCs) are a stable host material for lanthanides, but their performance lags behind that of the leading NaYF4 nanomaterials. Here, we leverage surface chemistry and core/shell architectures to uncover the contribution of dopants at the nanocrystal surface and of dopants in the nanocrystal bulk. We first assess the doping efficiency by ICP and find that, while Eu is almost quantitatively incorporated, the other lanthanides (La, Ce, Tb, Tm, Er, Yb) have about 50% incorporation efficiency over the studied doping range of 1–10%. We then determine the nanocrystal surface chemistry using NMR spectroscopy, despite the additional spectral line broadening caused by the paramagnetic lanthanide dopants. By varying the surface ligands and measuring the photoluminescence, we resolve the spectroscopic signals that are sensitive to a change in surface chemistry. Time-resolved emission spectra further reinforce the notion of a bulk component with a long luminescent lifetime and a surface component with a fast lifetime. Upon shelling Eu- or Tb-doped zirconia NCs with pure zirconia, the surface component disappears, and the photoluminescence quantum yield increases. We further functionalized the surface of the core/shell particles with oleylphosphonic acid ligands to obtain excellent dispersibility. These results show that lanthanide-doped zirconia NCs can be engineered to eliminate deactivation pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信