{"title":"从耦合到违反洛伦兹矢量场的BTZ黑洞中获取相关性","authors":"Xiaofang Liu, Wentao Liu, Zhilong Liu, Jieci Wang","doi":"10.1007/JHEP08(2025)094","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the effects of Lorentz violation on correlations harvesting, specifically focusing on the harvested entanglement and harvested mutual information between two Unruh-DeWitt detectors interacting with a quantum field in the Lorentz-violating BTZ-like black hole spacetime. Our findings reveal that Lorentz symmetry breaking has contrasting impacts on entanglement harvesting and mutual information harvesting in BTZ backgrounds: it enhances mutual information harvesting while suppressing entanglement harvesting. This phenomenon suggests that the increase in total correlations in Lorentz-violating vector field backgrounds with gravitational coupling is predominantly driven by classical components, with quantum correlations contributing less to the overall mutual information. These results indicate that Lorentz violation, as a quantum property of spacetime, may impose intrinsic constraints on the quantum information capacity encoded in spacetime due to competition among quantum degrees of freedom for resources. Furthermore, Lorentz symmetry breaking expands the <i>entanglement shadow</i> region, further demonstrating its disruptive effect on quantum correlations.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 8","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)094.pdf","citationCount":"0","resultStr":"{\"title\":\"Harvesting correlations from BTZ black hole coupled to a Lorentz-violating vector field\",\"authors\":\"Xiaofang Liu, Wentao Liu, Zhilong Liu, Jieci Wang\",\"doi\":\"10.1007/JHEP08(2025)094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the effects of Lorentz violation on correlations harvesting, specifically focusing on the harvested entanglement and harvested mutual information between two Unruh-DeWitt detectors interacting with a quantum field in the Lorentz-violating BTZ-like black hole spacetime. Our findings reveal that Lorentz symmetry breaking has contrasting impacts on entanglement harvesting and mutual information harvesting in BTZ backgrounds: it enhances mutual information harvesting while suppressing entanglement harvesting. This phenomenon suggests that the increase in total correlations in Lorentz-violating vector field backgrounds with gravitational coupling is predominantly driven by classical components, with quantum correlations contributing less to the overall mutual information. These results indicate that Lorentz violation, as a quantum property of spacetime, may impose intrinsic constraints on the quantum information capacity encoded in spacetime due to competition among quantum degrees of freedom for resources. Furthermore, Lorentz symmetry breaking expands the <i>entanglement shadow</i> region, further demonstrating its disruptive effect on quantum correlations.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 8\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP08(2025)094.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP08(2025)094\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP08(2025)094","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Harvesting correlations from BTZ black hole coupled to a Lorentz-violating vector field
In this paper, we investigate the effects of Lorentz violation on correlations harvesting, specifically focusing on the harvested entanglement and harvested mutual information between two Unruh-DeWitt detectors interacting with a quantum field in the Lorentz-violating BTZ-like black hole spacetime. Our findings reveal that Lorentz symmetry breaking has contrasting impacts on entanglement harvesting and mutual information harvesting in BTZ backgrounds: it enhances mutual information harvesting while suppressing entanglement harvesting. This phenomenon suggests that the increase in total correlations in Lorentz-violating vector field backgrounds with gravitational coupling is predominantly driven by classical components, with quantum correlations contributing less to the overall mutual information. These results indicate that Lorentz violation, as a quantum property of spacetime, may impose intrinsic constraints on the quantum information capacity encoded in spacetime due to competition among quantum degrees of freedom for resources. Furthermore, Lorentz symmetry breaking expands the entanglement shadow region, further demonstrating its disruptive effect on quantum correlations.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).