用于面板级制造高分辨率和高灵敏度生物芯片的双栅氧化物离子敏感薄膜晶体管

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jun Li;Zikang Mei;Hongyu Sun;Yu Huang;Wei Tang;Xiaojun Guo
{"title":"用于面板级制造高分辨率和高灵敏度生物芯片的双栅氧化物离子敏感薄膜晶体管","authors":"Jun Li;Zikang Mei;Hongyu Sun;Yu Huang;Wei Tang;Xiaojun Guo","doi":"10.1109/JSEN.2025.3584920","DOIUrl":null,"url":null,"abstract":"This work proposes a dual-gate (DG) ion-sensitive thin-film transistor (ISTFT) design with enhanced pH sensitivity and excellent robustness against process variation for high-resolution biochips, which is fully compatible with the standard inverted staggered structure indium gallium zinc oxide (IGZO) thin-film transistor (TFT) processes. The top gate (TG) connected to the extended-gate sensing electrode is formed directly onto the etch stop layer (ESL), having a larger capacitance to the channel than that of the bottom gate (BG). With the capacitance coupling effect, the device has a potential amplification coefficient of 2.5 and, in turn, achieves pH sensitivity of 83.4 mV/pH, which is beyond the Nernst limit. TCAD simulations and experimental measurements confirm that the amplification factor of the DG structure remains stable despite variations in TG dimensions, demonstrating strong robustness and scalability. The structure, therefore, enables the design of a high-resolution ISTFT array by leveraging a one-TFT (1-T) active pixel. Finally, a biochip consisting of a <inline-formula> <tex-math>$12\\times 12$ </tex-math></inline-formula> ISTFT array [250 pixels-per-inch (ppi)] with exceptional thermal and operational durability is demonstrated, proving the scalability of the proposed device design for panel-level mass production.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 16","pages":"30394-30400"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Gate Oxide Ion-Sensitive Thin-Film Transistor for Panel-Scale Manufacturing of High Resolution and High Sensitivity Biochips\",\"authors\":\"Jun Li;Zikang Mei;Hongyu Sun;Yu Huang;Wei Tang;Xiaojun Guo\",\"doi\":\"10.1109/JSEN.2025.3584920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a dual-gate (DG) ion-sensitive thin-film transistor (ISTFT) design with enhanced pH sensitivity and excellent robustness against process variation for high-resolution biochips, which is fully compatible with the standard inverted staggered structure indium gallium zinc oxide (IGZO) thin-film transistor (TFT) processes. The top gate (TG) connected to the extended-gate sensing electrode is formed directly onto the etch stop layer (ESL), having a larger capacitance to the channel than that of the bottom gate (BG). With the capacitance coupling effect, the device has a potential amplification coefficient of 2.5 and, in turn, achieves pH sensitivity of 83.4 mV/pH, which is beyond the Nernst limit. TCAD simulations and experimental measurements confirm that the amplification factor of the DG structure remains stable despite variations in TG dimensions, demonstrating strong robustness and scalability. The structure, therefore, enables the design of a high-resolution ISTFT array by leveraging a one-TFT (1-T) active pixel. Finally, a biochip consisting of a <inline-formula> <tex-math>$12\\\\times 12$ </tex-math></inline-formula> ISTFT array [250 pixels-per-inch (ppi)] with exceptional thermal and operational durability is demonstrated, proving the scalability of the proposed device design for panel-level mass production.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 16\",\"pages\":\"30394-30400\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11074271/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11074271/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一种双栅极(DG)离子敏感薄膜晶体管(ISTFT)设计,具有增强的pH灵敏度和对高分辨率生物芯片工艺变化的出色鲁棒性,它与标准的倒交错结构铟镓锌氧化物(IGZO)薄膜晶体管(TFT)工艺完全兼容。连接到扩展栅传感电极的顶栅(TG)直接形成在蚀刻停止层(ESL)上,比底栅(BG)对通道具有更大的电容。在电容耦合效应下,器件电位放大系数为2.5,pH灵敏度达到83.4 mV/pH,超出了Nernst极限。TCAD模拟和实验测量证实,尽管TG尺寸发生变化,DG结构的放大因子仍然保持稳定,显示出较强的鲁棒性和可扩展性。因此,该结构通过利用1- tft (1-T)有源像素实现高分辨率ISTFT阵列的设计。最后,展示了一种由$12 × 12$ ISTFT阵列[250像素/英寸(ppi)]组成的生物芯片,具有出色的散热和操作耐久性,证明了所提出的器件设计在面板级大规模生产中的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Gate Oxide Ion-Sensitive Thin-Film Transistor for Panel-Scale Manufacturing of High Resolution and High Sensitivity Biochips
This work proposes a dual-gate (DG) ion-sensitive thin-film transistor (ISTFT) design with enhanced pH sensitivity and excellent robustness against process variation for high-resolution biochips, which is fully compatible with the standard inverted staggered structure indium gallium zinc oxide (IGZO) thin-film transistor (TFT) processes. The top gate (TG) connected to the extended-gate sensing electrode is formed directly onto the etch stop layer (ESL), having a larger capacitance to the channel than that of the bottom gate (BG). With the capacitance coupling effect, the device has a potential amplification coefficient of 2.5 and, in turn, achieves pH sensitivity of 83.4 mV/pH, which is beyond the Nernst limit. TCAD simulations and experimental measurements confirm that the amplification factor of the DG structure remains stable despite variations in TG dimensions, demonstrating strong robustness and scalability. The structure, therefore, enables the design of a high-resolution ISTFT array by leveraging a one-TFT (1-T) active pixel. Finally, a biochip consisting of a $12\times 12$ ISTFT array [250 pixels-per-inch (ppi)] with exceptional thermal and operational durability is demonstrated, proving the scalability of the proposed device design for panel-level mass production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信