异步和非校准多摄像机系统的基于点云的三维跟踪

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Junhao Li;Kohei Shimasaki;Feiyue Wang;Idaku Ishii
{"title":"异步和非校准多摄像机系统的基于点云的三维跟踪","authors":"Junhao Li;Kohei Shimasaki;Feiyue Wang;Idaku Ishii","doi":"10.1109/LSENS.2025.3590157","DOIUrl":null,"url":null,"abstract":"Accurate 3-D tracking in heterogeneous, unsynchronized multicamera systems remains challenging because of calibration overhead and temporal drift. In this study, we present a point cloud- based framework that reconstructs the target trajectories without prior calibration or hardware synchronization. A sparse environmental point cloud provides a stable spatial reference; camera poses are estimated using perspective-n-point and refined with bundle adjustment. Moving objects are detected through k-nearest neighbor foreground extraction, and 2-D tracks are compressed into 1-D motion signals. Variational mode decomposition suppresses noise, whereas a two step alignment—subsequence dynamic time warping followed by sliding window fine matching—synchronizes asynchronous video streams. Robust triangulation recovers 3-D path. This method offers a low cost and easily deployable solution for wide area multitarget monitoring.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point Cloud-Based 3-D Tracking for Asynchronous and Uncalibrated Multicamera Systems\",\"authors\":\"Junhao Li;Kohei Shimasaki;Feiyue Wang;Idaku Ishii\",\"doi\":\"10.1109/LSENS.2025.3590157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate 3-D tracking in heterogeneous, unsynchronized multicamera systems remains challenging because of calibration overhead and temporal drift. In this study, we present a point cloud- based framework that reconstructs the target trajectories without prior calibration or hardware synchronization. A sparse environmental point cloud provides a stable spatial reference; camera poses are estimated using perspective-n-point and refined with bundle adjustment. Moving objects are detected through k-nearest neighbor foreground extraction, and 2-D tracks are compressed into 1-D motion signals. Variational mode decomposition suppresses noise, whereas a two step alignment—subsequence dynamic time warping followed by sliding window fine matching—synchronizes asynchronous video streams. Robust triangulation recovers 3-D path. This method offers a low cost and easily deployable solution for wide area multitarget monitoring.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 9\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11082678/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11082678/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在异构、非同步的多摄像机系统中,由于校准开销和时间漂移,精确的三维跟踪仍然具有挑战性。在这项研究中,我们提出了一个基于点云的框架,该框架无需事先校准或硬件同步即可重建目标轨迹。稀疏的环境点云提供了稳定的空间参考;使用视角-n-点估计相机姿态,并使用束调整进行细化。通过k近邻前景提取检测运动目标,并将二维轨迹压缩为一维运动信号。变分模分解抑制了噪声,而两步对齐-子序列动态时间规整和滑动窗口精细匹配同步异步视频流。鲁棒三角剖分恢复三维路径。该方法为广域多目标监测提供了一种低成本、易于部署的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point Cloud-Based 3-D Tracking for Asynchronous and Uncalibrated Multicamera Systems
Accurate 3-D tracking in heterogeneous, unsynchronized multicamera systems remains challenging because of calibration overhead and temporal drift. In this study, we present a point cloud- based framework that reconstructs the target trajectories without prior calibration or hardware synchronization. A sparse environmental point cloud provides a stable spatial reference; camera poses are estimated using perspective-n-point and refined with bundle adjustment. Moving objects are detected through k-nearest neighbor foreground extraction, and 2-D tracks are compressed into 1-D motion signals. Variational mode decomposition suppresses noise, whereas a two step alignment—subsequence dynamic time warping followed by sliding window fine matching—synchronizes asynchronous video streams. Robust triangulation recovers 3-D path. This method offers a low cost and easily deployable solution for wide area multitarget monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信