基于GIS的混沌麻雀搜索算法优化加权广义学习系统增强地下水潜力制图——以果庄泉地区为例

IF 5 2区 地球科学 Q1 WATER RESOURCES
Dekang Zhao , Fan Miao , Yongqi Chen , Qiang Wu , Guorui Feng , Bofeng Chang , He Su , Peiyuan Ren , Chenwei Hao , Zhenghao Li , Xiang Li , Jiaying Cai
{"title":"基于GIS的混沌麻雀搜索算法优化加权广义学习系统增强地下水潜力制图——以果庄泉地区为例","authors":"Dekang Zhao ,&nbsp;Fan Miao ,&nbsp;Yongqi Chen ,&nbsp;Qiang Wu ,&nbsp;Guorui Feng ,&nbsp;Bofeng Chang ,&nbsp;He Su ,&nbsp;Peiyuan Ren ,&nbsp;Chenwei Hao ,&nbsp;Zhenghao Li ,&nbsp;Xiang Li ,&nbsp;Jiaying Cai","doi":"10.1016/j.ejrh.2025.102708","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>Guozhuang spring area, Shanxi, North China.</div></div><div><h3>Study focus</h3><div>This study proposes a Chaotic Sparrow Search Algorithm-enhanced Weighted Broad Learning System (CSSA-WBLS) for groundwater potential assessment. The framework mitigates data imbalance via instance weighting in WBLS and enhances parameter optimization using chaotic operators within CSSA.</div></div><div><h3>New hydrological insights for the region</h3><div>Groundwater is a critical freshwater resource for sustainable water supply management. However, evaluating its potential faces two key challenges: severe data imbalance (fewer spring occurrence samples than non-spring samples) and suboptimal parameter optimization in existing models. Geospatial data were compiled using GIS analysis and field surveys. Eleven predictive factors spanning geology, hydrology, and anthropogenic influences were identified using the frequency ratio, random forest feature importance, and multicollinearity diagnostics. A dataset exhibiting a 1:10 spring/non-spring ratio was split into training (70 %) and testing (30 %) sets. BLS and WBLS models were hybridized with the Sparrow Search Algorithm (SSA) and CSSA to optimize network architecture and node parameters, addressing SVM limitations with imbalanced data. Model performance under imbalance was evaluated using ROC-AUC, accuracy, sensitivity, specificity, balanced accuracy, F1-score, confusion matrices, and Friedman testing. CSSA-WBLS achieved superior performance across over all metrics (AUC = 0.874) and effectively addressed data imbalance. Spatial mapping identified 18.78 % of the area as high-potential groundwater zones. CSSA-WBLS thus provides an efficient framework for groundwater assessment and has significant potential for regional applications.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"61 ","pages":"Article 102708"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced groundwater potential mapping using a GIS based chaotic sparrow search algorithm optimized weighted broad learning system: A case study of the Guozhuang spring region, northern China\",\"authors\":\"Dekang Zhao ,&nbsp;Fan Miao ,&nbsp;Yongqi Chen ,&nbsp;Qiang Wu ,&nbsp;Guorui Feng ,&nbsp;Bofeng Chang ,&nbsp;He Su ,&nbsp;Peiyuan Ren ,&nbsp;Chenwei Hao ,&nbsp;Zhenghao Li ,&nbsp;Xiang Li ,&nbsp;Jiaying Cai\",\"doi\":\"10.1016/j.ejrh.2025.102708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>Guozhuang spring area, Shanxi, North China.</div></div><div><h3>Study focus</h3><div>This study proposes a Chaotic Sparrow Search Algorithm-enhanced Weighted Broad Learning System (CSSA-WBLS) for groundwater potential assessment. The framework mitigates data imbalance via instance weighting in WBLS and enhances parameter optimization using chaotic operators within CSSA.</div></div><div><h3>New hydrological insights for the region</h3><div>Groundwater is a critical freshwater resource for sustainable water supply management. However, evaluating its potential faces two key challenges: severe data imbalance (fewer spring occurrence samples than non-spring samples) and suboptimal parameter optimization in existing models. Geospatial data were compiled using GIS analysis and field surveys. Eleven predictive factors spanning geology, hydrology, and anthropogenic influences were identified using the frequency ratio, random forest feature importance, and multicollinearity diagnostics. A dataset exhibiting a 1:10 spring/non-spring ratio was split into training (70 %) and testing (30 %) sets. BLS and WBLS models were hybridized with the Sparrow Search Algorithm (SSA) and CSSA to optimize network architecture and node parameters, addressing SVM limitations with imbalanced data. Model performance under imbalance was evaluated using ROC-AUC, accuracy, sensitivity, specificity, balanced accuracy, F1-score, confusion matrices, and Friedman testing. CSSA-WBLS achieved superior performance across over all metrics (AUC = 0.874) and effectively addressed data imbalance. Spatial mapping identified 18.78 % of the area as high-potential groundwater zones. CSSA-WBLS thus provides an efficient framework for groundwater assessment and has significant potential for regional applications.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"61 \",\"pages\":\"Article 102708\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581825005373\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825005373","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

研究区域:中国北方山西省郭庄泉地区。本研究提出了一种基于混沌麻雀搜索算法的地下水潜力评价加权广义学习系统(CSSA-WBLS)。该框架通过WBLS中的实例加权减轻了数据不平衡,并在CSSA中使用混沌算子增强了参数优化。地下水是可持续供水管理的重要淡水资源。然而,评估其潜力面临两个关键挑战:严重的数据不平衡(弹簧发生样本少于非弹簧样本)和现有模型的次优参数优化。地理空间数据是通过GIS分析和实地调查编制的。利用频率比、随机森林特征重要性和多重共线性诊断,确定了跨越地质、水文和人为影响的11个预测因子。一个显示1:10弹簧/非弹簧比例的数据集被分成训练集(70 %)和测试集(30 %)。将BLS和WBLS模型与麻雀搜索算法(SSA)和CSSA混合,优化网络结构和节点参数,解决支持向量机在数据不平衡时的局限性。使用ROC-AUC、准确性、敏感性、特异性、平衡准确性、f1评分、混淆矩阵和Friedman检验来评估模型在不平衡状态下的性能。CSSA-WBLS在所有指标上都取得了卓越的性能(AUC = 0.874),并有效地解决了数据不平衡问题。空间制图确定18.78 %的区域为高潜水区。因此,CSSA-WBLS为地下水评价提供了一个有效的框架,具有很大的区域应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced groundwater potential mapping using a GIS based chaotic sparrow search algorithm optimized weighted broad learning system: A case study of the Guozhuang spring region, northern China

Study region

Guozhuang spring area, Shanxi, North China.

Study focus

This study proposes a Chaotic Sparrow Search Algorithm-enhanced Weighted Broad Learning System (CSSA-WBLS) for groundwater potential assessment. The framework mitigates data imbalance via instance weighting in WBLS and enhances parameter optimization using chaotic operators within CSSA.

New hydrological insights for the region

Groundwater is a critical freshwater resource for sustainable water supply management. However, evaluating its potential faces two key challenges: severe data imbalance (fewer spring occurrence samples than non-spring samples) and suboptimal parameter optimization in existing models. Geospatial data were compiled using GIS analysis and field surveys. Eleven predictive factors spanning geology, hydrology, and anthropogenic influences were identified using the frequency ratio, random forest feature importance, and multicollinearity diagnostics. A dataset exhibiting a 1:10 spring/non-spring ratio was split into training (70 %) and testing (30 %) sets. BLS and WBLS models were hybridized with the Sparrow Search Algorithm (SSA) and CSSA to optimize network architecture and node parameters, addressing SVM limitations with imbalanced data. Model performance under imbalance was evaluated using ROC-AUC, accuracy, sensitivity, specificity, balanced accuracy, F1-score, confusion matrices, and Friedman testing. CSSA-WBLS achieved superior performance across over all metrics (AUC = 0.874) and effectively addressed data imbalance. Spatial mapping identified 18.78 % of the area as high-potential groundwater zones. CSSA-WBLS thus provides an efficient framework for groundwater assessment and has significant potential for regional applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信