CeO2纳米棒中的活性氧支持来自金属氧化物的MnOX,以促进烟气中Hg0的去除

IF 6.2 2区 工程技术 Q2 ENERGY & FUELS
Zhuo Liu , Yuchi Chen , Cui Jie , Honghu Li , Yuan Yao
{"title":"CeO2纳米棒中的活性氧支持来自金属氧化物的MnOX,以促进烟气中Hg0的去除","authors":"Zhuo Liu ,&nbsp;Yuchi Chen ,&nbsp;Cui Jie ,&nbsp;Honghu Li ,&nbsp;Yuan Yao","doi":"10.1016/j.joei.2025.102249","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient and low-cost transition metal oxide sorbent for Hg<sup>0</sup> removal is crucial to mercury abatement from flue gas. Herein, MnO<sub>X</sub> was loaded onto CeO<sub>2</sub> with different morphologies (cube, rod and particle) to prepare the Mn-Ce sorbents. MnO<sub>X</sub> supported by CeO<sub>2</sub> nanorod (Mn-Ce<sub>r</sub>) can achieve the best Hg<sup>0</sup> removal performance due to its high specific surface area, prominent redox capacity, enhanced surface acidity and activated oxygen species (lattice and chemisorbed oxygen). Additionally, the strong interaction of highly dispersed Mn species with CeO<sub>2</sub> nanorod carrier weakens the metal-oxygen bond strength and enhances the interfacial electron transfer, thereby leading to more oxygen vacancies and increasing surface reactive oxygen species over Mn-Ce<sub>r</sub>. The density functional theory (DFT) calculations further indicate the formation of Mn-O-Ce bond and oxygen vacancies over Mn-Ce<sub>r</sub> in which Hg atom can be chemically bound to O sites to form Hg-O. Under 5 % O<sub>2</sub>, 500 ppm NO, 800 ppm SO<sub>2</sub> and 3 % H<sub>2</sub>O, Mn-Ce<sub>r</sub> can still achieve a satisfactory Hg<sup>0</sup> removal performance (88.1 %), suggestive of its good adaptability under complicated flue gas conditions and application prospect.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"123 ","pages":"Article 102249"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activated oxygen species in CeO2 nanorod supported MnOX from metal oxide-support interaction to boost Hg0 removal from flue gas\",\"authors\":\"Zhuo Liu ,&nbsp;Yuchi Chen ,&nbsp;Cui Jie ,&nbsp;Honghu Li ,&nbsp;Yuan Yao\",\"doi\":\"10.1016/j.joei.2025.102249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing efficient and low-cost transition metal oxide sorbent for Hg<sup>0</sup> removal is crucial to mercury abatement from flue gas. Herein, MnO<sub>X</sub> was loaded onto CeO<sub>2</sub> with different morphologies (cube, rod and particle) to prepare the Mn-Ce sorbents. MnO<sub>X</sub> supported by CeO<sub>2</sub> nanorod (Mn-Ce<sub>r</sub>) can achieve the best Hg<sup>0</sup> removal performance due to its high specific surface area, prominent redox capacity, enhanced surface acidity and activated oxygen species (lattice and chemisorbed oxygen). Additionally, the strong interaction of highly dispersed Mn species with CeO<sub>2</sub> nanorod carrier weakens the metal-oxygen bond strength and enhances the interfacial electron transfer, thereby leading to more oxygen vacancies and increasing surface reactive oxygen species over Mn-Ce<sub>r</sub>. The density functional theory (DFT) calculations further indicate the formation of Mn-O-Ce bond and oxygen vacancies over Mn-Ce<sub>r</sub> in which Hg atom can be chemically bound to O sites to form Hg-O. Under 5 % O<sub>2</sub>, 500 ppm NO, 800 ppm SO<sub>2</sub> and 3 % H<sub>2</sub>O, Mn-Ce<sub>r</sub> can still achieve a satisfactory Hg<sup>0</sup> removal performance (88.1 %), suggestive of its good adaptability under complicated flue gas conditions and application prospect.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"123 \",\"pages\":\"Article 102249\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967125002776\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125002776","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、低成本的过渡金属氧化物吸附剂对烟气中汞的减排至关重要。本文将MnOX以不同形态(立方体、棒状和颗粒状)负载在CeO2上制备Mn-Ce吸附剂。CeO2纳米棒(Mn-Cer)负载的MnOX由于具有较高的比表面积、突出的氧化还原能力、增强的表面酸度和活性氧(晶格氧和化学吸附氧),可以达到最佳的脱氢性能。此外,高度分散的Mn与CeO2纳米棒载体的强相互作用削弱了金属-氧键强度,增强了界面电子转移,从而导致Mn- cer上更多的氧空位和表面活性氧增加。密度泛函理论(DFT)计算进一步表明,在Mn-Cer上形成Mn-O-Ce键和氧空位,其中Hg原子可以化学结合到O位上形成Hg-O。在5% O2、500 ppm NO、800 ppm SO2和3% H2O条件下,Mn-Cer仍能达到令人满意的脱除Hg0的效果(88.1%),表明其对复杂烟气条件具有良好的适应性和应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activated oxygen species in CeO2 nanorod supported MnOX from metal oxide-support interaction to boost Hg0 removal from flue gas
Developing efficient and low-cost transition metal oxide sorbent for Hg0 removal is crucial to mercury abatement from flue gas. Herein, MnOX was loaded onto CeO2 with different morphologies (cube, rod and particle) to prepare the Mn-Ce sorbents. MnOX supported by CeO2 nanorod (Mn-Cer) can achieve the best Hg0 removal performance due to its high specific surface area, prominent redox capacity, enhanced surface acidity and activated oxygen species (lattice and chemisorbed oxygen). Additionally, the strong interaction of highly dispersed Mn species with CeO2 nanorod carrier weakens the metal-oxygen bond strength and enhances the interfacial electron transfer, thereby leading to more oxygen vacancies and increasing surface reactive oxygen species over Mn-Cer. The density functional theory (DFT) calculations further indicate the formation of Mn-O-Ce bond and oxygen vacancies over Mn-Cer in which Hg atom can be chemically bound to O sites to form Hg-O. Under 5 % O2, 500 ppm NO, 800 ppm SO2 and 3 % H2O, Mn-Cer can still achieve a satisfactory Hg0 removal performance (88.1 %), suggestive of its good adaptability under complicated flue gas conditions and application prospect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信