均匀带电环空的静电势:空间交叉的研究

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
J. Ricardo de Sousa , Marcio Gomes , Orion Ciftja
{"title":"均匀带电环空的静电势:空间交叉的研究","authors":"J. Ricardo de Sousa ,&nbsp;Marcio Gomes ,&nbsp;Orion Ciftja","doi":"10.1016/j.elstat.2025.104152","DOIUrl":null,"url":null,"abstract":"<div><div>We present a comprehensive analysis of the nature of the electrostatic potential generated by a uniformly charged annulus. The annulus, namely, the annular disk is characterized by an outer radius, <span><math><mi>a</mi></math></span> and an inner radius, <span><math><mrow><mi>b</mi><mo>=</mo><mi>η</mi><mspace></mspace><mi>a</mi></mrow></math></span> where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>η</mi><mo>≤</mo><mn>1</mn></mrow></math></span> is a dimensionless parameter which enables a continuous interpolation between a disk (<span><math><mrow><mi>η</mi><mo>=</mo><mn>0</mn></mrow></math></span>) and a ring (<span><math><mrow><mi>η</mi><mo>→</mo><mn>1</mn></mrow></math></span>). The goal is to investigate the geometric transition between two-dimensional (disk-like) and one-dimensional (ring-like) electrostatic behavior. The electrostatic potential created by the uniformly charged annulus is expressed in terms of <em>complete elliptic integrals of the first kind</em> and we explicitly analyze its behavior on its plane. We show that for all nonzero values of parameter <span><math><mi>η</mi></math></span> the resulting electrostatic potential develops a pronounced maximum at a given radial position located within the annular region. As <span><math><mi>η</mi></math></span> increases, this peak becomes sharper and shifts outward towards the outer radius. To quantify this geometric transition, we analyze the potential at the edge as a function of the annular thickness parameter, <span><math><mrow><mi>δ</mi><mo>=</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>η</mi><mo>)</mo></mrow><mspace></mspace><mi>a</mi></mrow></math></span>. Our analysis reveals a <em>dimensional crossover</em> at a critical thickness <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>59</mn><mspace></mspace><mi>a</mi></mrow></math></span> identified by looking at the features of the second derivative of such potential with respect to <span><math><mi>δ</mi></math></span>. The potential exhibits positive curvature for <span><math><mrow><mi>δ</mi><mo>&lt;</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> reflecting a concentration of charge near the edge, typical for a uniformly charged ring. Conversely, the potential displays zero curvature for <span><math><mrow><mi>δ</mi><mo>&gt;</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, with features that are more akin to a uniformly charged disk. This curvature-based approach offers a physically transparent and computationally accessible criterion for distinguishing between ring-like and disk-like electrostatic behavior.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"138 ","pages":"Article 104152"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrostatic potential of a uniformly charged annulus: A study of dimensional crossover\",\"authors\":\"J. Ricardo de Sousa ,&nbsp;Marcio Gomes ,&nbsp;Orion Ciftja\",\"doi\":\"10.1016/j.elstat.2025.104152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a comprehensive analysis of the nature of the electrostatic potential generated by a uniformly charged annulus. The annulus, namely, the annular disk is characterized by an outer radius, <span><math><mi>a</mi></math></span> and an inner radius, <span><math><mrow><mi>b</mi><mo>=</mo><mi>η</mi><mspace></mspace><mi>a</mi></mrow></math></span> where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>η</mi><mo>≤</mo><mn>1</mn></mrow></math></span> is a dimensionless parameter which enables a continuous interpolation between a disk (<span><math><mrow><mi>η</mi><mo>=</mo><mn>0</mn></mrow></math></span>) and a ring (<span><math><mrow><mi>η</mi><mo>→</mo><mn>1</mn></mrow></math></span>). The goal is to investigate the geometric transition between two-dimensional (disk-like) and one-dimensional (ring-like) electrostatic behavior. The electrostatic potential created by the uniformly charged annulus is expressed in terms of <em>complete elliptic integrals of the first kind</em> and we explicitly analyze its behavior on its plane. We show that for all nonzero values of parameter <span><math><mi>η</mi></math></span> the resulting electrostatic potential develops a pronounced maximum at a given radial position located within the annular region. As <span><math><mi>η</mi></math></span> increases, this peak becomes sharper and shifts outward towards the outer radius. To quantify this geometric transition, we analyze the potential at the edge as a function of the annular thickness parameter, <span><math><mrow><mi>δ</mi><mo>=</mo><mi>a</mi><mo>−</mo><mi>b</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>η</mi><mo>)</mo></mrow><mspace></mspace><mi>a</mi></mrow></math></span>. Our analysis reveals a <em>dimensional crossover</em> at a critical thickness <span><math><mrow><msub><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>59</mn><mspace></mspace><mi>a</mi></mrow></math></span> identified by looking at the features of the second derivative of such potential with respect to <span><math><mi>δ</mi></math></span>. The potential exhibits positive curvature for <span><math><mrow><mi>δ</mi><mo>&lt;</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> reflecting a concentration of charge near the edge, typical for a uniformly charged ring. Conversely, the potential displays zero curvature for <span><math><mrow><mi>δ</mi><mo>&gt;</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>, with features that are more akin to a uniformly charged disk. This curvature-based approach offers a physically transparent and computationally accessible criterion for distinguishing between ring-like and disk-like electrostatic behavior.</div></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":\"138 \",\"pages\":\"Article 104152\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030438862500124X\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030438862500124X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个全面的性质分析静电势产生的一个均匀带电环空。环空即环形圆盘具有外半径a和内半径b=ηa的特征,其中0≤η≤1为无量纲参数,可实现圆盘(η=0)和环(η→1)之间的连续插补。目的是研究二维(圆盘状)和一维(环状)静电行为之间的几何转变。将均匀带电环空产生的静电势用第一类完全椭圆积分表示,并明确地分析了其在环空平面上的行为。我们表明,对于参数η的所有非零值,由此产生的静电势在位于环形区域内的给定径向位置上发展为明显的最大值。随着η的增大,这个峰变得更尖锐,并向外向半径移动。为了量化这种几何转变,我们分析了边缘的势作为环形厚度参数δ=a−b=(1−η)a的函数。我们的分析表明,在临界厚度δc=0.59a处,通过观察该势相对于δ的二阶导数的特征,可以确定维度交叉。δ<;δc的电位呈现正曲率,反映了在边缘附近的电荷浓度,这是均匀带电环的典型特征。相反,δ>;δc的势显示为零曲率,其特征更类似于均匀带电的圆盘。这种基于曲率的方法提供了一种物理透明和计算可访问的标准,用于区分环状和圆盘状静电行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrostatic potential of a uniformly charged annulus: A study of dimensional crossover
We present a comprehensive analysis of the nature of the electrostatic potential generated by a uniformly charged annulus. The annulus, namely, the annular disk is characterized by an outer radius, a and an inner radius, b=ηa where 0η1 is a dimensionless parameter which enables a continuous interpolation between a disk (η=0) and a ring (η1). The goal is to investigate the geometric transition between two-dimensional (disk-like) and one-dimensional (ring-like) electrostatic behavior. The electrostatic potential created by the uniformly charged annulus is expressed in terms of complete elliptic integrals of the first kind and we explicitly analyze its behavior on its plane. We show that for all nonzero values of parameter η the resulting electrostatic potential develops a pronounced maximum at a given radial position located within the annular region. As η increases, this peak becomes sharper and shifts outward towards the outer radius. To quantify this geometric transition, we analyze the potential at the edge as a function of the annular thickness parameter, δ=ab=(1η)a. Our analysis reveals a dimensional crossover at a critical thickness δc=0.59a identified by looking at the features of the second derivative of such potential with respect to δ. The potential exhibits positive curvature for δ<δc reflecting a concentration of charge near the edge, typical for a uniformly charged ring. Conversely, the potential displays zero curvature for δ>δc, with features that are more akin to a uniformly charged disk. This curvature-based approach offers a physically transparent and computationally accessible criterion for distinguishing between ring-like and disk-like electrostatic behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信