{"title":"超自适应神经形态视觉装置的高阶动力学","authors":"Jiayi Xu, Biyi Jiang, Weizhen Wang, Zhifeng Guo, Junsen Gao, Xinyan Hu, Jingkai Qin, Liang Ran, Longyang Lin, Songhua Cai, Yida Li, Feichi Zhou","doi":"10.1038/s41565-025-01984-3","DOIUrl":null,"url":null,"abstract":"<p>Neuromorphic hardware for artificial general vision intelligence holds the potential to match and surpass biological visual systems by processing complex visual dynamics with high adaptability and efficiency. However, current implementations rely on multiple complementary metal–oxide–semiconductor or neuromorphic elements, leading to significant area and power inefficiencies and system complexity. This is owing to a key challenge that no single electronic device, to our knowledge, has yet been demonstrated that can integrate retina-like and cortex-like spiking and graded neuronal dynamics operable across both optical and electrical domains. Here we report a single ultra-adaptive neuromorphic vision device (I<sub><i>x</i></sub>T<sub><i>y</i></sub>O<sub>1–<i>x</i>–<i>y</i></sub>/CuO<sub><i>x</i></sub>/Pd) by ingeniously tailoring its electronic properties, enabling uniquely controlled interface and bulk dynamics by charged particles, including electrons, oxygen ions and vacancies. The device highly amalgamates broadband retinal spiking neuron and non-spiking graded neuron, and cortical synapse and neuron dynamics, with ultralow power consumption. Real-time optoelectronic dynamics is elucidated through in situ scanning transmission electron microscopy and validated by technology computer-aided design simulations. An artificial general vision intelligence system based on homogeneous ultra-adaptive neuromorphic vision device arrays is constructed, adaptively supporting both asynchronous event-driven and synchronous frame-driven paradigms for versatile cognitive imaging demands, with superior power efficiency of up to 67.89 trillion operations per second per watt and area efficiency of up to 3.96 mega operations per second per feature size (MOPS/F<sup>2</sup>).</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 1","pages":""},"PeriodicalIF":34.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order dynamics in an ultra-adaptive neuromorphic vision device\",\"authors\":\"Jiayi Xu, Biyi Jiang, Weizhen Wang, Zhifeng Guo, Junsen Gao, Xinyan Hu, Jingkai Qin, Liang Ran, Longyang Lin, Songhua Cai, Yida Li, Feichi Zhou\",\"doi\":\"10.1038/s41565-025-01984-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuromorphic hardware for artificial general vision intelligence holds the potential to match and surpass biological visual systems by processing complex visual dynamics with high adaptability and efficiency. However, current implementations rely on multiple complementary metal–oxide–semiconductor or neuromorphic elements, leading to significant area and power inefficiencies and system complexity. This is owing to a key challenge that no single electronic device, to our knowledge, has yet been demonstrated that can integrate retina-like and cortex-like spiking and graded neuronal dynamics operable across both optical and electrical domains. Here we report a single ultra-adaptive neuromorphic vision device (I<sub><i>x</i></sub>T<sub><i>y</i></sub>O<sub>1–<i>x</i>–<i>y</i></sub>/CuO<sub><i>x</i></sub>/Pd) by ingeniously tailoring its electronic properties, enabling uniquely controlled interface and bulk dynamics by charged particles, including electrons, oxygen ions and vacancies. The device highly amalgamates broadband retinal spiking neuron and non-spiking graded neuron, and cortical synapse and neuron dynamics, with ultralow power consumption. Real-time optoelectronic dynamics is elucidated through in situ scanning transmission electron microscopy and validated by technology computer-aided design simulations. An artificial general vision intelligence system based on homogeneous ultra-adaptive neuromorphic vision device arrays is constructed, adaptively supporting both asynchronous event-driven and synchronous frame-driven paradigms for versatile cognitive imaging demands, with superior power efficiency of up to 67.89 trillion operations per second per watt and area efficiency of up to 3.96 mega operations per second per feature size (MOPS/F<sup>2</sup>).</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":34.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01984-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01984-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
High-order dynamics in an ultra-adaptive neuromorphic vision device
Neuromorphic hardware for artificial general vision intelligence holds the potential to match and surpass biological visual systems by processing complex visual dynamics with high adaptability and efficiency. However, current implementations rely on multiple complementary metal–oxide–semiconductor or neuromorphic elements, leading to significant area and power inefficiencies and system complexity. This is owing to a key challenge that no single electronic device, to our knowledge, has yet been demonstrated that can integrate retina-like and cortex-like spiking and graded neuronal dynamics operable across both optical and electrical domains. Here we report a single ultra-adaptive neuromorphic vision device (IxTyO1–x–y/CuOx/Pd) by ingeniously tailoring its electronic properties, enabling uniquely controlled interface and bulk dynamics by charged particles, including electrons, oxygen ions and vacancies. The device highly amalgamates broadband retinal spiking neuron and non-spiking graded neuron, and cortical synapse and neuron dynamics, with ultralow power consumption. Real-time optoelectronic dynamics is elucidated through in situ scanning transmission electron microscopy and validated by technology computer-aided design simulations. An artificial general vision intelligence system based on homogeneous ultra-adaptive neuromorphic vision device arrays is constructed, adaptively supporting both asynchronous event-driven and synchronous frame-driven paradigms for versatile cognitive imaging demands, with superior power efficiency of up to 67.89 trillion operations per second per watt and area efficiency of up to 3.96 mega operations per second per feature size (MOPS/F2).
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.