轨道霍尔效应的非常规缩放

IF 38.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Siyang Peng, Xuan Zheng, Sheng Li, Bin Lao, Yamin Han, Zhaoliang Liao, Hongsheng Zheng, Yumeng Yang, Tianye Yu, Peitao Liu, Yan Sun, Xing-Qiu Chen, Shouzhong Peng, Weisheng Zhao, Run-Wei Li, Zhiming Wang
{"title":"轨道霍尔效应的非常规缩放","authors":"Siyang Peng, Xuan Zheng, Sheng Li, Bin Lao, Yamin Han, Zhaoliang Liao, Hongsheng Zheng, Yumeng Yang, Tianye Yu, Peitao Liu, Yan Sun, Xing-Qiu Chen, Shouzhong Peng, Weisheng Zhao, Run-Wei Li, Zhiming Wang","doi":"10.1038/s41563-025-02326-3","DOIUrl":null,"url":null,"abstract":"<p>Orbital torque is a promising approach for electrically controlling magnetization in spintronic devices. However, unravelling the underlying mechanisms governing the orbital Hall effect (OHE), especially the role of extrinsic scattering and its scaling with conductivity (<i>σ</i><sub><i>xx</i></sub>), is crucial for realizing the full potential of orbital torque in energy-efficient spintronic devices. Here, using SrRuO<sub>3</sub> as a model system, we discover an unconventional scaling of orbital Hall conductivity (<span>\\({\\sigma }_{{\\rm{OH}}}\\)</span>) with tunable <i>σ</i><sub><i>xx</i></sub>. <span>\\({\\sigma }_{{\\rm{OH}}}\\)</span> remains constant at high <i>σ</i><sub><i>xx</i></sub> but exhibits a striking enhancement as <i>σ</i><sub><i>xx</i></sub> decreases, contrasting with spin Hall effect suppression at low <i>σ</i><sub><i>xx</i></sub>. This behaviour underscores the Dyakonov–Perel-like orbital relaxation mechanism as key to unconventional OHE. Leveraging this scaling, we achieve enhanced orbital torque via concurrent increases in orbital Hall conductivity and orbital Hall angle, demonstrating threefold power reduction in spin–orbit torque switching with moderate <i>σ</i><sub><i>xx</i></sub> reduction. Our work highlights the dominant role of extrinsic disorder scattering in unconventional OHE and establishes a transformative paradigm for energy-efficient spintronics.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"14 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconventional scaling of the orbital Hall effect\",\"authors\":\"Siyang Peng, Xuan Zheng, Sheng Li, Bin Lao, Yamin Han, Zhaoliang Liao, Hongsheng Zheng, Yumeng Yang, Tianye Yu, Peitao Liu, Yan Sun, Xing-Qiu Chen, Shouzhong Peng, Weisheng Zhao, Run-Wei Li, Zhiming Wang\",\"doi\":\"10.1038/s41563-025-02326-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Orbital torque is a promising approach for electrically controlling magnetization in spintronic devices. However, unravelling the underlying mechanisms governing the orbital Hall effect (OHE), especially the role of extrinsic scattering and its scaling with conductivity (<i>σ</i><sub><i>xx</i></sub>), is crucial for realizing the full potential of orbital torque in energy-efficient spintronic devices. Here, using SrRuO<sub>3</sub> as a model system, we discover an unconventional scaling of orbital Hall conductivity (<span>\\\\({\\\\sigma }_{{\\\\rm{OH}}}\\\\)</span>) with tunable <i>σ</i><sub><i>xx</i></sub>. <span>\\\\({\\\\sigma }_{{\\\\rm{OH}}}\\\\)</span> remains constant at high <i>σ</i><sub><i>xx</i></sub> but exhibits a striking enhancement as <i>σ</i><sub><i>xx</i></sub> decreases, contrasting with spin Hall effect suppression at low <i>σ</i><sub><i>xx</i></sub>. This behaviour underscores the Dyakonov–Perel-like orbital relaxation mechanism as key to unconventional OHE. Leveraging this scaling, we achieve enhanced orbital torque via concurrent increases in orbital Hall conductivity and orbital Hall angle, demonstrating threefold power reduction in spin–orbit torque switching with moderate <i>σ</i><sub><i>xx</i></sub> reduction. Our work highlights the dominant role of extrinsic disorder scattering in unconventional OHE and establishes a transformative paradigm for energy-efficient spintronics.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02326-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02326-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

轨道转矩是一种很有前途的自旋电子器件磁化控制方法。然而,揭示控制轨道霍尔效应(OHE)的潜在机制,特别是外在散射的作用及其随电导率(σxx)的缩放,对于在节能自旋电子器件中充分发挥轨道扭矩的潜力至关重要。在这里,我们使用SrRuO3作为模型系统,我们发现了一个非常规的缩放轨道霍尔电导率(\({\sigma }_{{\rm{OH}}}\))与可调σxx。\({\sigma }_{{\rm{OH}}}\)在高σxx时保持不变,但随着σxx的减小而显著增强,与低σxx时自旋霍尔效应的抑制形成对比。这种行为强调了Dyakonov-Perel-like轨道弛豫机制是非常规OHE的关键。利用这种缩放,我们通过同时增加轨道霍尔电导率和轨道霍尔角来实现轨道转矩的增强,表明自旋轨道转矩开关的功率降低了三倍,降低了适度的σxx。我们的工作强调了外在无序散射在非常规OHE中的主导作用,并为节能自旋电子学建立了一个变革范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unconventional scaling of the orbital Hall effect

Unconventional scaling of the orbital Hall effect

Orbital torque is a promising approach for electrically controlling magnetization in spintronic devices. However, unravelling the underlying mechanisms governing the orbital Hall effect (OHE), especially the role of extrinsic scattering and its scaling with conductivity (σxx), is crucial for realizing the full potential of orbital torque in energy-efficient spintronic devices. Here, using SrRuO3 as a model system, we discover an unconventional scaling of orbital Hall conductivity (\({\sigma }_{{\rm{OH}}}\)) with tunable σxx. \({\sigma }_{{\rm{OH}}}\) remains constant at high σxx but exhibits a striking enhancement as σxx decreases, contrasting with spin Hall effect suppression at low σxx. This behaviour underscores the Dyakonov–Perel-like orbital relaxation mechanism as key to unconventional OHE. Leveraging this scaling, we achieve enhanced orbital torque via concurrent increases in orbital Hall conductivity and orbital Hall angle, demonstrating threefold power reduction in spin–orbit torque switching with moderate σxx reduction. Our work highlights the dominant role of extrinsic disorder scattering in unconventional OHE and establishes a transformative paradigm for energy-efficient spintronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Materials
Nature Materials 工程技术-材料科学:综合
CiteScore
62.20
自引率
0.70%
发文量
221
审稿时长
3.2 months
期刊介绍: Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology. Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines. Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信