质子开关激活Cu3VS4微球富(100)晶面,用于高效插层转换离子存储。

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-08-14 DOI:10.1002/smll.202507328
Xiaojin Lian, Xing Shen, Zhimeng Tang, Yipeng Liu, Le Tong, Yiming Zhang, Qian Li, Xiaoyuan Zhou, Dong-Liang Peng, Baihua Qu, Jingfeng Wang
{"title":"质子开关激活Cu3VS4微球富(100)晶面,用于高效插层转换离子存储。","authors":"Xiaojin Lian,&nbsp;Xing Shen,&nbsp;Zhimeng Tang,&nbsp;Yipeng Liu,&nbsp;Le Tong,&nbsp;Yiming Zhang,&nbsp;Qian Li,&nbsp;Xiaoyuan Zhou,&nbsp;Dong-Liang Peng,&nbsp;Baihua Qu,&nbsp;Jingfeng Wang","doi":"10.1002/smll.202507328","DOIUrl":null,"url":null,"abstract":"<p>Rechargeable magnesium batteries (RMBs) are receiving great attention due to their abundant resources and high intrinsic safety. However, the strong interaction between Mg<sup>2+</sup> ions and slow diffusion kinetics in electrochemical reaction result in poor Mg<sup>2+</sup>-storage performance. Herein, Cu<sub>3</sub>VS<sub>4</sub> microspheres with rich (100) crystal facets and cubic primary particles are constructed by the precise regulation of the proton switch. The cubic morphology and rich (100) facets provide sufficient active sites for redox reactions, facilitating the diffusion of energy storage ions within a 3D channel. The optimized Cu<sub>3</sub>VS<sub>4</sub> cathode exhibits a high discharge specific capacity of 240 mAh g<sup>−1</sup> at a current density of 50 mA g<sup>−1</sup> and a retention rate of 77% over 500 cycles at 1 A g<sup>−1</sup>, which is superior to most of the reported cathode materials. The experimental investigation and DFT theoretical computation demonstrate that the facet induces a novel reaction mechanism of intercalation reaction followed by a transformation process, involving the joint contribution of Mg<sup>2+</sup>/Na<sup>+</sup> ions. Moreover, the pouch cell prototypes are assembled with decent capacity and cycle characteristics to confirm the practical prospect. This work provides new crystal facet engineering for structural optimization of cathode materials for RMBs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 39","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton Switch Enabled Rich (100) Crystal Facet of Cu3VS4 Microspheres for Efficient Intercalation-Transformation Ion Storage\",\"authors\":\"Xiaojin Lian,&nbsp;Xing Shen,&nbsp;Zhimeng Tang,&nbsp;Yipeng Liu,&nbsp;Le Tong,&nbsp;Yiming Zhang,&nbsp;Qian Li,&nbsp;Xiaoyuan Zhou,&nbsp;Dong-Liang Peng,&nbsp;Baihua Qu,&nbsp;Jingfeng Wang\",\"doi\":\"10.1002/smll.202507328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rechargeable magnesium batteries (RMBs) are receiving great attention due to their abundant resources and high intrinsic safety. However, the strong interaction between Mg<sup>2+</sup> ions and slow diffusion kinetics in electrochemical reaction result in poor Mg<sup>2+</sup>-storage performance. Herein, Cu<sub>3</sub>VS<sub>4</sub> microspheres with rich (100) crystal facets and cubic primary particles are constructed by the precise regulation of the proton switch. The cubic morphology and rich (100) facets provide sufficient active sites for redox reactions, facilitating the diffusion of energy storage ions within a 3D channel. The optimized Cu<sub>3</sub>VS<sub>4</sub> cathode exhibits a high discharge specific capacity of 240 mAh g<sup>−1</sup> at a current density of 50 mA g<sup>−1</sup> and a retention rate of 77% over 500 cycles at 1 A g<sup>−1</sup>, which is superior to most of the reported cathode materials. The experimental investigation and DFT theoretical computation demonstrate that the facet induces a novel reaction mechanism of intercalation reaction followed by a transformation process, involving the joint contribution of Mg<sup>2+</sup>/Na<sup>+</sup> ions. Moreover, the pouch cell prototypes are assembled with decent capacity and cycle characteristics to confirm the practical prospect. This work provides new crystal facet engineering for structural optimization of cathode materials for RMBs.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 39\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202507328\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202507328","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可充电镁电池以其丰富的资源和较高的本质安全性而备受关注。然而,电化学反应中Mg2+离子之间的相互作用强,扩散动力学慢,导致Mg2+的存储性能较差。本文通过对质子开关的精确调控,构建了具有丰富(100)个晶面和立方初级粒子的Cu3VS4微球。立方形态和丰富的(100)面为氧化还原反应提供了足够的活性位点,促进了储能离子在3D通道内的扩散。优化后的Cu3VS4阴极在50 mA g-1电流密度下具有240 mAh g-1的高放电比容量,在1 a g-1下500次循环保持率为77%,优于大多数报道的阴极材料。实验研究和DFT理论计算表明,该facet诱发了一种新的反应机制,即Mg2+/Na+离子共同参与的插层反应和转化过程。此外,还组装了具有良好容量和循环特性的袋状电池原型,以确定其实际应用前景。本工作为阴极材料结构优化提供了新的晶面工程方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Proton Switch Enabled Rich (100) Crystal Facet of Cu3VS4 Microspheres for Efficient Intercalation-Transformation Ion Storage

Proton Switch Enabled Rich (100) Crystal Facet of Cu3VS4 Microspheres for Efficient Intercalation-Transformation Ion Storage

Rechargeable magnesium batteries (RMBs) are receiving great attention due to their abundant resources and high intrinsic safety. However, the strong interaction between Mg2+ ions and slow diffusion kinetics in electrochemical reaction result in poor Mg2+-storage performance. Herein, Cu3VS4 microspheres with rich (100) crystal facets and cubic primary particles are constructed by the precise regulation of the proton switch. The cubic morphology and rich (100) facets provide sufficient active sites for redox reactions, facilitating the diffusion of energy storage ions within a 3D channel. The optimized Cu3VS4 cathode exhibits a high discharge specific capacity of 240 mAh g−1 at a current density of 50 mA g−1 and a retention rate of 77% over 500 cycles at 1 A g−1, which is superior to most of the reported cathode materials. The experimental investigation and DFT theoretical computation demonstrate that the facet induces a novel reaction mechanism of intercalation reaction followed by a transformation process, involving the joint contribution of Mg2+/Na+ ions. Moreover, the pouch cell prototypes are assembled with decent capacity and cycle characteristics to confirm the practical prospect. This work provides new crystal facet engineering for structural optimization of cathode materials for RMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信