Jin He,Tianmei Lyu,Danqing Song,Zhaoxin Song,Xiaoxuan Fan,Xiao Peng,Lei Chen,Kai Dong
{"title":"提高半结晶生物聚合物机电转换性能的通用定向工程策略。","authors":"Jin He,Tianmei Lyu,Danqing Song,Zhaoxin Song,Xiaoxuan Fan,Xiao Peng,Lei Chen,Kai Dong","doi":"10.1002/adma.202510157","DOIUrl":null,"url":null,"abstract":"High-charge-density triboelectric materials are the key to developing high-performance triboelectric nanogenerators. However, most semi-crystalline biopolymers exhibit low triboelectric output performance due to the limitations in their intrinsic structure and physicochemical properties. Herein, orientation-regulated silk fibroin nanofibers (SFNs) with phase transition polarization and enhanced carrier migration are developed through high-voltage and high-speed synergistic electrospinning technology. To analyze the molecular and aggregation structural changes of SFNs during high-voltage electric fields and stress-induced orientation processes, a multiscale structural evolutionary model is constructed from microscopic molecular chains to mesoscopic aggregation structures, and then to macroscopic fiber arrangements. It is found that as the orientation coefficient increases, the molecular conformation shifts from disordered α-helices to ordered stacked β-sheets. The aggregated molecular chains gradually slip, recombine, and arrange in an orderly manner along the direction of the stress field, which contributes to regulating the charge capture and carrier migration properties. The orientation-regulated SFNs significantly enhance the interfacial charge transfer and bulk charge transport capacity, thereby greatly improving the triboelectric performance. This work not only provides new insights into the mechano-electric conversion mechanisms of semi-crystalline biopolymers but also offers guidance for the design of high-charge-density triboelectric materials.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"16 1","pages":"e10157"},"PeriodicalIF":26.8000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Universal Orientation-Engineering Strategy for Enhancing Mechano-Electric Conversion Performance in Semi-Crystalline Biopolymers.\",\"authors\":\"Jin He,Tianmei Lyu,Danqing Song,Zhaoxin Song,Xiaoxuan Fan,Xiao Peng,Lei Chen,Kai Dong\",\"doi\":\"10.1002/adma.202510157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-charge-density triboelectric materials are the key to developing high-performance triboelectric nanogenerators. However, most semi-crystalline biopolymers exhibit low triboelectric output performance due to the limitations in their intrinsic structure and physicochemical properties. Herein, orientation-regulated silk fibroin nanofibers (SFNs) with phase transition polarization and enhanced carrier migration are developed through high-voltage and high-speed synergistic electrospinning technology. To analyze the molecular and aggregation structural changes of SFNs during high-voltage electric fields and stress-induced orientation processes, a multiscale structural evolutionary model is constructed from microscopic molecular chains to mesoscopic aggregation structures, and then to macroscopic fiber arrangements. It is found that as the orientation coefficient increases, the molecular conformation shifts from disordered α-helices to ordered stacked β-sheets. The aggregated molecular chains gradually slip, recombine, and arrange in an orderly manner along the direction of the stress field, which contributes to regulating the charge capture and carrier migration properties. The orientation-regulated SFNs significantly enhance the interfacial charge transfer and bulk charge transport capacity, thereby greatly improving the triboelectric performance. This work not only provides new insights into the mechano-electric conversion mechanisms of semi-crystalline biopolymers but also offers guidance for the design of high-charge-density triboelectric materials.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"16 1\",\"pages\":\"e10157\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202510157\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202510157","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Universal Orientation-Engineering Strategy for Enhancing Mechano-Electric Conversion Performance in Semi-Crystalline Biopolymers.
High-charge-density triboelectric materials are the key to developing high-performance triboelectric nanogenerators. However, most semi-crystalline biopolymers exhibit low triboelectric output performance due to the limitations in their intrinsic structure and physicochemical properties. Herein, orientation-regulated silk fibroin nanofibers (SFNs) with phase transition polarization and enhanced carrier migration are developed through high-voltage and high-speed synergistic electrospinning technology. To analyze the molecular and aggregation structural changes of SFNs during high-voltage electric fields and stress-induced orientation processes, a multiscale structural evolutionary model is constructed from microscopic molecular chains to mesoscopic aggregation structures, and then to macroscopic fiber arrangements. It is found that as the orientation coefficient increases, the molecular conformation shifts from disordered α-helices to ordered stacked β-sheets. The aggregated molecular chains gradually slip, recombine, and arrange in an orderly manner along the direction of the stress field, which contributes to regulating the charge capture and carrier migration properties. The orientation-regulated SFNs significantly enhance the interfacial charge transfer and bulk charge transport capacity, thereby greatly improving the triboelectric performance. This work not only provides new insights into the mechano-electric conversion mechanisms of semi-crystalline biopolymers but also offers guidance for the design of high-charge-density triboelectric materials.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.