{"title":"利用一维空心硅纳米管进行纳米医学治疗的机会。","authors":"Nguyen T Le, Jeffery L Coffer","doi":"10.1080/17435889.2025.2545747","DOIUrl":null,"url":null,"abstract":"<p><p>While perhaps best known for its role in the semiconductor device industry, silicon at the nanoscale is drawing extensive attention to biotech applications such as drug delivery as a consequence of structural diversity and biomedically useful properties. In this focused review we specifically center on one-dimensional nanotubes of silicon by first discussing fabrication routes and then cover fundamental studies of silicon-based nanotube structures relevant to applications in non-traditional platinate chemotherapy as well as gene therapy. Two types of basic platforms are described: (1) freestanding nanotube bundles as well as (2) patterned arrays. Our emphasis here is with regard to tunability of structure tailored to a given application. We conclude with a discussion of existing challenges and opportunities for the future.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"2459-2467"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490400/pdf/","citationCount":"0","resultStr":"{\"title\":\"Therapeutic opportunities for nanomedicine with hollow one-dimensional silicon nanotubes.\",\"authors\":\"Nguyen T Le, Jeffery L Coffer\",\"doi\":\"10.1080/17435889.2025.2545747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While perhaps best known for its role in the semiconductor device industry, silicon at the nanoscale is drawing extensive attention to biotech applications such as drug delivery as a consequence of structural diversity and biomedically useful properties. In this focused review we specifically center on one-dimensional nanotubes of silicon by first discussing fabrication routes and then cover fundamental studies of silicon-based nanotube structures relevant to applications in non-traditional platinate chemotherapy as well as gene therapy. Two types of basic platforms are described: (1) freestanding nanotube bundles as well as (2) patterned arrays. Our emphasis here is with regard to tunability of structure tailored to a given application. We conclude with a discussion of existing challenges and opportunities for the future.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":\" \",\"pages\":\"2459-2467\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490400/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17435889.2025.2545747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2545747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Therapeutic opportunities for nanomedicine with hollow one-dimensional silicon nanotubes.
While perhaps best known for its role in the semiconductor device industry, silicon at the nanoscale is drawing extensive attention to biotech applications such as drug delivery as a consequence of structural diversity and biomedically useful properties. In this focused review we specifically center on one-dimensional nanotubes of silicon by first discussing fabrication routes and then cover fundamental studies of silicon-based nanotube structures relevant to applications in non-traditional platinate chemotherapy as well as gene therapy. Two types of basic platforms are described: (1) freestanding nanotube bundles as well as (2) patterned arrays. Our emphasis here is with regard to tunability of structure tailored to a given application. We conclude with a discussion of existing challenges and opportunities for the future.