{"title":"玫瑰杆菌科的发现:海洋异养的细菌模型。","authors":"Alison Buchan, José M González, Mary Ann Moran","doi":"10.1146/annurev-marine-050823-105708","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular revolution of the 1990s brought insights into the tremendous breadth of ecological and evolutionary diversity harbored within the bacterial and archaeal domains of life, enabling scientists to peer into the proverbial microbial black box. Many of these early molecular efforts focused on microbes in marine surface waters, given their global relevance and ease of extraction from seawater via filtration. From molecular surveys of marine microbial communities, there emerged a limited number of taxa with marked numerical dominance and distribution across ocean realms. One of these lineages is the now well-studied <i>Roseobacteraceae</i> family. Three decades of studying roseobacter members, many of which are amenable to both laboratory culture and genetic manipulation, have led to discoveries in how microbial heterotrophs process diverse marine organic matter, drive biogeochemical cycles, and interact with primary producers.</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":" ","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discoveries with <i>Roseobacteraceae</i>: Bacterial Models for Ocean Heterotrophy.\",\"authors\":\"Alison Buchan, José M González, Mary Ann Moran\",\"doi\":\"10.1146/annurev-marine-050823-105708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecular revolution of the 1990s brought insights into the tremendous breadth of ecological and evolutionary diversity harbored within the bacterial and archaeal domains of life, enabling scientists to peer into the proverbial microbial black box. Many of these early molecular efforts focused on microbes in marine surface waters, given their global relevance and ease of extraction from seawater via filtration. From molecular surveys of marine microbial communities, there emerged a limited number of taxa with marked numerical dominance and distribution across ocean realms. One of these lineages is the now well-studied <i>Roseobacteraceae</i> family. Three decades of studying roseobacter members, many of which are amenable to both laboratory culture and genetic manipulation, have led to discoveries in how microbial heterotrophs process diverse marine organic matter, drive biogeochemical cycles, and interact with primary producers.</p>\",\"PeriodicalId\":55508,\"journal\":{\"name\":\"Annual Review of Marine Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Marine Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-marine-050823-105708\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-050823-105708","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Discoveries with Roseobacteraceae: Bacterial Models for Ocean Heterotrophy.
The molecular revolution of the 1990s brought insights into the tremendous breadth of ecological and evolutionary diversity harbored within the bacterial and archaeal domains of life, enabling scientists to peer into the proverbial microbial black box. Many of these early molecular efforts focused on microbes in marine surface waters, given their global relevance and ease of extraction from seawater via filtration. From molecular surveys of marine microbial communities, there emerged a limited number of taxa with marked numerical dominance and distribution across ocean realms. One of these lineages is the now well-studied Roseobacteraceae family. Three decades of studying roseobacter members, many of which are amenable to both laboratory culture and genetic manipulation, have led to discoveries in how microbial heterotrophs process diverse marine organic matter, drive biogeochemical cycles, and interact with primary producers.
期刊介绍:
The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.